"f_x=ye^{-x^2-y^2}-2x^2ye^{-x^2-y^2}"
"f_y=xe^{-x^2-y^2}-2xy^2e^{-x^2-y^2}"
"\\begin{matrix}\n f_x=0 \\\\\n f_y=0\n\\end{matrix}=>\\begin{matrix}\n ye^{-x^2-y^2}-2x^2ye^{-x^2-y^2}=0 \\\\\n xe^{-x^2-y^2}-2xy^2e^{-x^2-y^2}=0\n\\end{matrix}"
"\\begin{matrix}\n y(1-2x^2)=0 \\\\\n x(1-2y^2)=0\n\\end{matrix}"
Critical points:
"(-\\dfrac{\\sqrt{2}}{2}, -\\dfrac{\\sqrt{2}}{2}), (-\\dfrac{\\sqrt{2}}{2}, \\dfrac{\\sqrt{2}}{2}), (0, 0),""(\\dfrac{\\sqrt{2}}{2}, -\\dfrac{\\sqrt{2}}{2}), (\\dfrac{\\sqrt{2}}{2}, \\dfrac{\\sqrt{2}}{2})"
"f_{xx}=-6xye^{-x^2-y^2}+4x^3ye^{-x^2-y^2}"
"f_{xy}=e^{-x^2-y^2}-2y^2e^{-x^2-y^2}-2x^2e^{-x^2-y^2}+4x^2y^2e^{-x^2-y^2}"
"f_{yy}=-6xye^{-x^2-y^2}+4xy^3e^{-x^2-y^2}"
"(-\\dfrac{\\sqrt{2}}{2}, -\\dfrac{\\sqrt{2}}{2})"
"f_{xy}=0"
"f_{yy}=-2e^{-1}"
"\\begin{vmatrix}\n -2e^{-1} & 0 \\\\\n 0 & -2e^{-1}\n\\end{vmatrix}=4e^{-2}>0"
Point "(-\\dfrac{\\sqrt{2}}{2}, -\\dfrac{\\sqrt{2}}{2})" is a local maximum.
"(-\\dfrac{\\sqrt{2}}{2}, \\dfrac{\\sqrt{2}}{2})"
"f_{xy}=0"
"f_{yy}=2e^{-1}"
"\\begin{vmatrix}\n 2e^{-1} & 0 \\\\\n 0 & 2e^{-1}\n\\end{vmatrix}=4e^{-2}>0"
Point "(-\\dfrac{\\sqrt{2}}{2}, \\dfrac{\\sqrt{2}}{2})" is a local minimum.
"(\\dfrac{\\sqrt{2}}{2}, -\\dfrac{\\sqrt{2}}{2})"
"f_{xx}=2e^{-1}>0""f_{xy}=0"
"f_{yy}=2e^{-1}"
"\\begin{vmatrix}\n 2e^{-1} & 0 \\\\\n 0 & 2e^{-1}\n\\end{vmatrix}=4e^{-2}>0"
Point "(\\dfrac{\\sqrt{2}}{2}, -\\dfrac{\\sqrt{2}}{2})" is a local minimum.
"(\\dfrac{\\sqrt{2}}{2}, \\dfrac{\\sqrt{2}}{2})"
"f_{xy}=0"
"f_{yy}=-2e^{-1}"
"\\begin{vmatrix}\n -2e^{-1} & 0 \\\\\n 0 & -2e^{-1}\n\\end{vmatrix}=4e^{-2}>0"
Point "(\\dfrac{\\sqrt{2}}{2}, \\dfrac{\\sqrt{2}}{2})" is a local maximum.
"(0,0)"
"f_{xy}=1"
"f_{yy}=0"
"\\begin{vmatrix}\n 0 & 1\\\\\n 1 & 0\n\\end{vmatrix}=-1<0"
Point "(0,0)" is a saddle point.
Comments
Leave a comment