(a) limx→0(cos2x)x21
∵u=eln(u)
⟹limx→0(cos2x)1/x2=limx→0eln(cos2x)1/x2=limx→0ex2ln(cos2x)
⟹ Since we have an intermediate of the type 00 , So we can use L'Hopital's Rule -
⟹elimx→0x2cos2x=elimx→0dxd(x2)dxd(ln(cos2x))=elimx→0xcos2x(−sin2x)=elimx→0(x−tan2x)
⟹e−limx→0(xtan2x)
Again, Since we have an intermediate of the type 00 , So again we can use l'Hopital's Rule -
⟹e−limx→0(xtan2x) =e−limx→0(d/dx(x)d/dx(tan2x))=e−limx→0(2sec22x)
⟹ e−limx→0(2sec22x)=e−2×1=e−2
Hence, limx→0(cos2x)x21=e21
Comments