Question #223356

Find limit using L' Hopitals rule:


(a) lim x \to 0 (cos2x)^(1/x^2)

1
Expert's answer
2021-09-28T09:18:04-0400

(a) limx0(cos2x)1x2lim_{x\rightarrow 0} (cos2x)^{\frac{1}{x^2}}

u=eln(u)\because u=e^{ln(u)}


    limx0(cos2x)1/x2=limx0eln(cos2x)1/x2=limx0eln(cos2x)x2\implies lim_{x\rightarrow0}(cos2x)^{1/x^2}=lim_{x\rightarrow0}e^{ln(cos2x)^{1/x^2}}=lim_{x\rightarrow0}e^{\frac{ln(cos2x)}{x^2}}


    \implies Since we have an intermediate of the type 00\dfrac{0}{0} , So we can use L'Hopital's Rule -


    elimx0cos2xx2=elimx0ddx(ln(cos2x))ddx(x2)=elimx0(sin2x)xcos2x=elimx0(tan2xx)\implies e^{lim_{x\rightarrow0}\frac{cos2x}{x^2}}=e^{lim_{x\rightarrow0}\frac{\frac{d}{dx}(ln(cos2x))}{\frac{d}{dx}(x^2)}} = e^{lim_{x\rightarrow0}\frac{(-sin2x)}{xcos2x}} = e^{lim_{x\rightarrow0}(\frac{-tan2x}{x})}


    elimx0(tan2xx)\implies e^{-lim_{x\rightarrow0}(\frac{tan2x}{x})}


Again, Since we have an intermediate of the type 00\dfrac{0}{0} , So again we can use l'Hopital's Rule -

    elimx0(tan2xx)\implies e^{-lim_{x\rightarrow0}(\frac{tan2x}{x})} =elimx0(d/dx(tan2x)d/dx(x))=elimx0(2sec22x)= e^{-lim_{x\rightarrow 0}(\frac{d/dx(tan2x)}{d/dx(x)})}=e^{-lim_{x\rightarrow 0}(2sec^22x)}


    \\\implies elimx0(2sec22x)=e2×1=e2e^{-lim_{x\rightarrow 0}(2sec^22x)} = e^{-2\times 1}=e^{-2}


Hence, limx0(cos2x)1x2=1e2lim_{x\rightarrow 0 }(cos2x)^{\frac{1}{x^2}}=\dfrac{1}{e^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS