Find limit using L' Hopitals rule:
(a) lim x "\\to" 0 (cos2x)^(1/x^2)
(a) "lim_{x\\rightarrow 0} (cos2x)^{\\frac{1}{x^2}}"
"\\because u=e^{ln(u)}"
"\\implies lim_{x\\rightarrow0}(cos2x)^{1\/x^2}=lim_{x\\rightarrow0}e^{ln(cos2x)^{1\/x^2}}=lim_{x\\rightarrow0}e^{\\frac{ln(cos2x)}{x^2}}"
"\\implies" Since we have an intermediate of the type "\\dfrac{0}{0}" , So we can use L'Hopital's Rule -
"\\implies e^{lim_{x\\rightarrow0}\\frac{cos2x}{x^2}}=e^{lim_{x\\rightarrow0}\\frac{\\frac{d}{dx}(ln(cos2x))}{\\frac{d}{dx}(x^2)}} = e^{lim_{x\\rightarrow0}\\frac{(-sin2x)}{xcos2x}} = e^{lim_{x\\rightarrow0}(\\frac{-tan2x}{x})}"
"\\implies e^{-lim_{x\\rightarrow0}(\\frac{tan2x}{x})}"
Again, Since we have an intermediate of the type "\\dfrac{0}{0}" , So again we can use l'Hopital's Rule -
"\\implies e^{-lim_{x\\rightarrow0}(\\frac{tan2x}{x})}" "= e^{-lim_{x\\rightarrow 0}(\\frac{d\/dx(tan2x)}{d\/dx(x)})}=e^{-lim_{x\\rightarrow 0}(2sec^22x)}"
"\\\\\\implies" "e^{-lim_{x\\rightarrow 0}(2sec^22x)} = e^{-2\\times 1}=e^{-2}"
Hence, "lim_{x\\rightarrow 0 }(cos2x)^{\\frac{1}{x^2}}=\\dfrac{1}{e^2}"
Comments
Leave a comment