Question #223288

The domain of the function define by f(x) = √[Inx/ (Inx-1)] is?



1
Expert's answer
2021-10-26T17:54:38-0400

The first restriction:


x>0x>0

since it is not possible to have x0x\le0 under the ln\ln.

The second restriction:


lnx10xe\ln x - 1\ne0\Rightarrow x\ne e

since the denominator can not be zero.

The third restriction:


lnxlnx10\dfrac{\ln x}{\ln x - 1}\ge0

since there can not be a negative quantity under the square root sign. The last restriction is satisfied if:


lnx0 and lnx1>0lnx0 and lnx>1x1 and x>ex>e\ln x\ge0\space\text{and}\space \ln x-1>0\\ \ln x\ge0\space\text{and}\space\ln x>1\\ x\ge1 \space\text{and}\space x>e\\ x>e

or


lnx0 and lnx1<0lnx0 and lnx<10<x1 and 0<x<e0<x1\ln x\le0\space\text{and}\space \ln x-1<0\\ \ln x\le0\space\text{and}\space\ln x<1\\ 0<x\le1 \space\text{and}\space 0<x<e\\ 0<x\le1

Finaly, for the third restriction have:


x(0;1](e;+)x\in (0;1]\cup(e;+\infty)

Combining these three restrictions together, find the domain:


x(0;1](e;+)x\in (0;1]\cup(e;+\infty)


It is so, since the third restriction already contains the first and the second ones.


Answer. x(0;1](e;+)x\in (0;1]\cup(e;+\infty).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS