Question #223429
1. Find R R
D
(x + 2y)dA, where D is the region bounded by the parabolas
y = x
2
, and y = 1 + x
1
Expert's answer
2021-08-06T09:49:19-0400

exact questionevaluate  D (x+2y)dAwhere D is the region bounded by the parabolas y=2x2 and y=1+x2solutiondiagram:where blue line represent y=2x2 red line represent y=1+x2exact \space question\\ evaluate \space \int \space \int_{D} \space (x+2y)dA\\ where \space D \space is \space the \space region \space bounded \space by \space the \space parabolas \space y=2x^2 \space and \space y=1+x^2\\ ------------------------\\ solution\\ diagram\\:- where \space blue \space line \space represent \space y=2x^2\\ \space red \space line \space represent \space y=1+x^2


 D (x+2y)dA=11 2x21+x2(x+2y)dydx                                         =11 (xy+y2)2x21+x2dx                                         =11[(x(1+x2)+(1+x2)2)(x(2x2)+(2x2)2)]dx                                         =11[(x+x3+1+2x2+x4)(2x3+4x4)]dx                                         =11[(1+x+2x2x33x4)]dx                                         =[x+x22+2x33x443x55]11                                         =3215hence required solution=3215\int \space \int_{D} \space (x+2y)dA=\int_{-1}^1 \space \int_{2x^2}^{1+x^2}(x+2y)dydx\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space =\int_{-1}^1 \space (xy+y^2)|_{2x^2}^{1+x^2}dx\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space =\int_{-1}^1[(x(1+x^2)+(1+x^2)^2)-(x(2x^2)+(2x^2)^2)]dx\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space =\int_{-1}^1[(x+x^3+1+2x^2+x^4)-(2x^3+4x^4)]dx\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space =\int_{-1}^1[(1+x+2x^2-x^3-3x^4)]dx\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space =[x+\frac{x^2}{2}+\frac{2x^3}{3}-\frac{x^4}{4}-\frac{3x^5}{5}]_{-1}^1\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space =\frac{32}{15}\\ hence \space required \space solution=\frac{32}{15}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS