Question #221651

Let f: I → R, where I is an open interval containing the point c, and let k ∈ R. Prove the following.


(a) f is differentiable at c with f ′(c) = k iff limh→0 [ f (c + h) – f (c)]/h = k.


*(b) If f is differentiable at c with f ′(c) = k, then limh→ 0 [ f (c + h) – f (c – h)]/2h = k.


(c) If f is differentiable at c with f ′(c) = k, then lim n →∞ n[f (c + 1/n) – f (c)] = k.


(d) Find counterexamples to show that the converses of parts (b) and (c) are not true.




The book is Steven R. Lay, Analysis with an introduction to proof.


1
Expert's answer
2022-02-21T17:45:16-0500

a) By the definition, ff is differentiable at cc with f(c)=kf '(c)=k iff

f(x)=f(c)+k(xc)+o(xc),xcf(x)=f(c)+k(x-c)+o(|x-c|),\,x\to c. Then, by denoting xcx-c as h, we have:

ff is differentiable at cc with f(c)=kf '(c)=k iff

f(c+h)f(c)=kh+o(h),h0f(c+h)-f(c)=kh+o(|h|),\,h\to 0 iff

f(c+h)f(c)h=k+o(h)h=k+o(1)\frac{f(c+h)-f(c)}{h}=k+\frac{o(|h|)}{h}=k+o(1) iff

limh0f(c+h)f(c)h=k\lim\limits_{h\to 0}\frac{f(c+h)-f(c)}{h}=k.


b) Using the result from a), we have

limh0f(c+h)f(c)h=k\lim\limits_{h\to 0}\frac{f(c+h)-f(c)}{h}=k and limh0f(c)f(ch)h=limh0f(ch)f(c)h=limh0f(c+h)f(c)h=k\lim\limits_{h\to 0}\frac{f(c)-f(c-h)}{h}=\lim\limits_{h\to 0}\frac{f(c-h)-f(c)}{-h}=\lim\limits_{h\to 0}\frac{f(c+h)-f(c)}{h}=k.

Therefore,

limh0f(c+h)f(ch)2h=12limh0(f(c+h)f(c)h+f(c)f(ch)h)=12(k+k)=k\lim\limits_{h\to 0}\frac{f(c+h)-f(c-h)}{2h}=\frac{1}{2}\lim\limits_{h\to 0}(\frac{f(c+h)-f(c)}{h}+\frac{f(c)-f(c-h)}{h})=\frac{1}{2}(k+k)=k.


c) If ff is differentiable at cc with f(c)=kf'(c)=k , then limh0f(c+h)f(c)h=k\lim\limits_{h\to 0}\frac{f(c+h)-f(c)}{h}=k. That is, for all ε>0\varepsilon>0 there exists δ>0\delta>0 such that for all h(δ,δ)h\in(-\delta,\delta) we have f(c+h)f(c)hk<ε|\frac{f(c+h)-f(c)}{h}-k|<\varepsilon.

Put N=[1/δ]+1>1/δN=[1/\delta]+1>1/\delta. For all nNn\in\mathbb{N}, if n>Nn>N then 1/n<1/N<δ1/n<1/N<\delta and hence,

f(c+1/n)f(c)1/nk<ε|\frac{f(c+1/n)-f(c)}{1/n}-k|<\varepsilon, that is, n(f(c+1n)f(c))k<ε|n({f(c+\frac{1}{n})-f(c)})-k|<\varepsilon.

This means that limn+n(f(c+1n)f(c))=k\lim\limits_{n\to +\infty}n({f(c+\frac{1}{n})-f(c)})=k.


d) Let f(x)=cos2πxf(x)=\cos\frac{2\pi}{x}, if x0x\ne 0, else f(x)=1f(x)=1. Consider c=0c=0.

Then

limh0f(c+h)f(ch)2h=limh0cos2πhcos2π(h)2h=0\lim\limits_{h\to 0}\frac{f(c+h)-f(c-h)}{2h}=\lim\limits_{h\to 0}\frac{\cos\frac{2\pi}{h}-\cos\frac{2\pi}{(-h)}}{2h}=0 and

limn+n(f(c+1n)f(c))=limn+n(cos2πn1)=0\lim\limits_{n\to +\infty}n({f(c+\frac{1}{n})-f(c)})=\lim\limits_{n\to +\infty}n({\cos 2\pi n-1})=0

We see that both conditions b) and c) are met, but f(x)f(x) is not differentiable at x=0x=0. It is not even continuous there, since the sequence f(c+12n)=cosπn=(1)nf(c+\frac{1}{2n})=\cos\pi n=(-1)^n has no limit.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS