Let f: I → R, where I is an open interval containing the point c, and let k ∈ R. Prove the following.
(a) f is differentiable at c with f ′(c) = k iff limh→0 [ f (c + h) – f (c)]/h = k.
*(b) If f is differentiable at c with f ′(c) = k, then limh→ 0 [ f (c + h) – f (c – h)]/2h = k.
(c) If f is differentiable at c with f ′(c) = k, then lim n →∞ n[f (c + 1/n) – f (c)] = k.
(d) Find counterexamples to show that the converses of parts (b) and (c) are not true.
The book is Steven R. Lay, Analysis with an introduction to proof.
a) By the definition, "f" is differentiable at "c" with "f '(c)=k" iff
"f(x)=f(c)+k(x-c)+o(|x-c|),\\,x\\to c". Then, by denoting "x-c" as h, we have:
"f" is differentiable at "c" with "f '(c)=k" iff
"f(c+h)-f(c)=kh+o(|h|),\\,h\\to 0" iff
"\\frac{f(c+h)-f(c)}{h}=k+\\frac{o(|h|)}{h}=k+o(1)" iff
"\\lim\\limits_{h\\to 0}\\frac{f(c+h)-f(c)}{h}=k".
b) Using the result from a), we have
"\\lim\\limits_{h\\to 0}\\frac{f(c+h)-f(c)}{h}=k" and "\\lim\\limits_{h\\to 0}\\frac{f(c)-f(c-h)}{h}=\\lim\\limits_{h\\to 0}\\frac{f(c-h)-f(c)}{-h}=\\lim\\limits_{h\\to 0}\\frac{f(c+h)-f(c)}{h}=k".
Therefore,
"\\lim\\limits_{h\\to 0}\\frac{f(c+h)-f(c-h)}{2h}=\\frac{1}{2}\\lim\\limits_{h\\to 0}(\\frac{f(c+h)-f(c)}{h}+\\frac{f(c)-f(c-h)}{h})=\\frac{1}{2}(k+k)=k".
c) If "f" is differentiable at "c" with "f'(c)=k" , then "\\lim\\limits_{h\\to 0}\\frac{f(c+h)-f(c)}{h}=k". That is, for all "\\varepsilon>0" there exists "\\delta>0" such that for all "h\\in(-\\delta,\\delta)" we have "|\\frac{f(c+h)-f(c)}{h}-k|<\\varepsilon".
Put "N=[1\/\\delta]+1>1\/\\delta". For all "n\\in\\mathbb{N}", if "n>N" then "1\/n<1\/N<\\delta" and hence,
"|\\frac{f(c+1\/n)-f(c)}{1\/n}-k|<\\varepsilon", that is, "|n({f(c+\\frac{1}{n})-f(c)})-k|<\\varepsilon".
This means that "\\lim\\limits_{n\\to +\\infty}n({f(c+\\frac{1}{n})-f(c)})=k".
d) Let "f(x)=\\cos\\frac{2\\pi}{x}", if "x\\ne 0", else "f(x)=1". Consider "c=0".
Then
"\\lim\\limits_{h\\to 0}\\frac{f(c+h)-f(c-h)}{2h}=\\lim\\limits_{h\\to 0}\\frac{\\cos\\frac{2\\pi}{h}-\\cos\\frac{2\\pi}{(-h)}}{2h}=0" and
"\\lim\\limits_{n\\to +\\infty}n({f(c+\\frac{1}{n})-f(c)})=\\lim\\limits_{n\\to +\\infty}n({\\cos 2\\pi n-1})=0"
We see that both conditions b) and c) are met, but "f(x)" is not differentiable at "x=0". It is not even continuous there, since the sequence "f(c+\\frac{1}{2n})=\\cos\\pi n=(-1)^n" has no limit.
Comments
Leave a comment