1. "f(x)=\\dfrac{x-2}{2x-5}"
"Domain: (-\\infin, \\dfrac{5}{2})\\cup (\\dfrac{5}{2}, \\infin)"
 Determine if the function has an inverse. Is the function a one-Âto-Âone function?
This function passes the Horizontal Line Test which means it is a one-Âto-Âone function that has an inverse.Â
2.
3.
"Domain: (-\\infin, \\dfrac{5}{2})\\cup (\\dfrac{5}{2}, \\infin)"
"Range: (-\\infin, \\dfrac{1}{2})\\cup (\\dfrac{1}{2}, \\infin)"
4.
Change "f(x)" to "y"
Switch "x" and "y"
Solve for "y"
"y=\\dfrac{5x-2}{2x-1}"
Change "y" back to "f^{-1}(x)"
"Domain: (-\\infin, \\dfrac{1}{2})\\cup (\\dfrac{1}{2}, \\infin)"
"Range: (-\\infin, \\dfrac{5}{2})\\cup (\\dfrac{5}{2}, \\infin)"
Comments
Dear Jen, the question clearly described the function "f(x)" and its inverse "f^{-1}(x)."
Thus, inverse of y=what
Leave a comment