What is the derivative of "y = e"arcsinx ("1\/ (1+x^2)" )
Given the equation
We can rewrite it as:
"\\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[\\frac{\\mathrm{e}^{\\arcsin (x)}}{x^{2}+1}\\right]\\\\\n=\\frac{\\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[\\mathrm{e}^{\\arcsin (x)}\\right] \\cdot\\left(x^{2}+1\\right)-\\mathrm{e}^{\\arcsin (x)} \\cdot \\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[x^{2}+1\\right]}{\\left(x^{2}+1\\right)^{2}}\\\\\n=\\frac{\\mathrm{e}^{\\arcsin (x)} \\cdot \\frac{\\mathrm{d}}{\\mathrm{d} x}[\\arcsin (x)] \\cdot\\left(x^{2}+1\\right)-\\mathrm{e}^{\\arcsin (x)}\\left(\\frac{\\mathrm{d}}{\\mathrm{d} x}\\left[x^{2}\\right]+\\frac{\\mathrm{d}}{\\mathrm{d} x}[1]\\right)}{\\left(x^{2}+1\\right)^{2}}\\\\\n=\\frac{\\frac{\\left(x^{2}+1\\right) \\mathrm{e}^{\\mathrm{arcsin}(x)}{\\sqrt{1-x^{2}}}}-2 x \\mathrm{e}^{\\arcsin (x)}}{\\left(x^{2}+1\\right)^{2}}\\\\\n\\text{ Therefore the derivative is }\\\\\n\\dfrac{dy}{dx}=\\frac{\\mathrm{e}^{\\arcsin (x)}}{\\sqrt{1-x^{2}}\\left(x^{2}+1\\right)}-\\frac{2 x \\mathrm{e}^{\\arcsin (x)}}{\\left(x^{2}+1\\right)^{2}}"
Comments
Leave a comment