What is the derivative of y=arctanx/ln2xy = arctanx/ln2xy=arctanx/ln2x
Let us find the derivative of y=arctanxln2x:y =\frac{ \arctan x}{\ln 2x}:y=ln2xarctanx:
y′=11+x2ln2x−arctanx22xln22x=xln2x−(1+x2)arctanxx(1+x2)ln22x.y' =\frac{ \frac{1}{1+x^2}\ln 2x-\arctan x\frac{2}{2x}}{\ln^2 2x}= \frac{x\ln 2x-(1+x^2)\arctan x}{x(1+x^2)\ln^2 2x}.y′=ln22x1+x21ln2x−arctanx2x2=x(1+x2)ln22xxln2x−(1+x2)arctanx.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments