Determine the derivative of y=ey = ey=e cos2x^xx
Let us determine the derivative of y=ecos2xy = e^{\cos 2x}y=ecos2x using chain rule (f(g(x)))′=f′(g(x))⋅g′(x).(f(g(x)))'=f'(g(x))\cdot g'(x).(f(g(x)))′=f′(g(x))⋅g′(x).
y′=ecos2x(cos2x)′=ecos2x(−sin2x)(2x)′=−2sin2xecos2x.y'=e^{\cos 2x}(\cos 2x)'=e^{\cos 2x}(-\sin 2x)(2x)'=-2\sin 2xe^{\cos 2x}.y′=ecos2x(cos2x)′=ecos2x(−sin2x)(2x)′=−2sin2xecos2x.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments