Answer to Question #196776 in Calculus for desmond

Question #196776

 1.By writing 3 cos x + 4 sin x = λ d dx (4 cos x + 5 sin x) + µ(4 cos x + 5 sin x), where λ and µ are constants


1
Expert's answer
2021-05-25T10:56:58-0400

Given that,

3cosx+4sinx=λddx(4cosx+5sinx)+μ(4cosx+5sinx)3cosx+4sinx=λ(4sinx+5cosx)+μ(4cosx+5sinx)3cosx+4sinx=(5λ+4μ)cosx+(4λ+5μ)sinx3cosx+4sinx=\lambda \dfrac{d}{dx}(4cosx+5sinx)+\mu(4cosx+5sinx)\\\Rightarrow 3cosx+4sinx=\lambda (-4sinx+5cosx)+\mu(4cosx+5sinx)\\\Rightarrow 3cosx+4sinx=(5\lambda+4\mu)cosx+(-4\lambda+5\mu)sinx


Equating coefficient of sinx and cosx on both sides, we get

5λ+4μ=3  .....(i)4λ+5μ=4 .....(ii)5\lambda+4\mu = 3\ \ .....(i)\\-4\lambda+5\mu=4\ .....(ii)


On solving equation (i) and (ii)

we get,

μ=3241  and  λ=141\boxed{\mu=\dfrac{32}{41}}\ \ and\ \ \boxed{\lambda=-\dfrac{1}{41}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment