1.By writing 3 cos x + 4 sin x = λ d dx (4 cos x + 5 sin x) + µ(4 cos x + 5 sin x), where λ and µ are constants
Given that,
"3cosx+4sinx=\\lambda \\dfrac{d}{dx}(4cosx+5sinx)+\\mu(4cosx+5sinx)\\\\\\Rightarrow 3cosx+4sinx=\\lambda (-4sinx+5cosx)+\\mu(4cosx+5sinx)\\\\\\Rightarrow 3cosx+4sinx=(5\\lambda+4\\mu)cosx+(-4\\lambda+5\\mu)sinx"
Equating coefficient of sinx and cosx on both sides, we get
"5\\lambda+4\\mu = 3\\ \\ .....(i)\\\\-4\\lambda+5\\mu=4\\ .....(ii)"
On solving equation (i) and (ii)
we get,
"\\boxed{\\mu=\\dfrac{32}{41}}\\ \\ and\\ \\ \\boxed{\\lambda=-\\dfrac{1}{41}}"
Comments
Leave a comment