Given that,
3cosx+4sinx=λdxd(4cosx+5sinx)+μ(4cosx+5sinx)⇒3cosx+4sinx=λ(−4sinx+5cosx)+μ(4cosx+5sinx)⇒3cosx+4sinx=(5λ+4μ)cosx+(−4λ+5μ)sinx
Equating coefficient of sinx and cosx on both sides, we get
5λ+4μ=3 .....(i)−4λ+5μ=4 .....(ii)
On solving equation (i) and (ii)
we get,
μ=4132 and λ=−411
Comments
Leave a comment