Question #196682

Find the relative extreme values of the function f (x) = x3 − x2 − 6x + 5.


1
Expert's answer
2021-05-26T15:46:28-0400



Given

f(x)=x3-x2-6x+5


We will find extreme

First of find 1st derivative of f(x)


f'(x)=3x2-2x-6


Put f'(x) equal to zero for extremize.

f'(x)=0

3x2-2x-6=0


Now find value of x.

x=[2±44.3(6)]2.3x=(1±19)3x=\frac{[2± \sqrt{4-4.3(-6)}]}{2.3}\\ x=\frac{(1±\sqrt{\smash[b]{19}}) }{3}





this values of x give us extreme value of f(x)


Now find second derivative of f(x) for find maxima or minima.


f''(x)= 6x-2


Now check 

x=(1+19)3x=\frac{(1+\sqrt{\smash[b]{19}}) }{3}


is give maxima or minima.

So put this value in f''(x)

=6((1+19)3)2=6(\frac{(1+\sqrt{\smash[b]{19}}) }{3})-2


=8.717

It is positive value .it mean this value of x give us minima of f(x).

Put this value of x in f(x).

f(x)=(1+19)3)3(1+19)3)26(1+19)3)+5f(x)=(\frac{1+\sqrt{\smash[b]{19}})}{3})^3-(\frac{1+\sqrt{\smash[b]{19}})}{3})^2-6(\frac{1+\sqrt{\smash[b]{19}})}{3})+5


=9.59802825019

This is minima value.


Now check

x=(119)3x=\frac{(1-\sqrt{\smash[b]{19}}) }{3}

 

is give maxima or minima.

So put this value in f''(x)

=6((119)3)2=6(\frac{(1-\sqrt{\smash[b]{19}}) }{3})-2


=-8.71779788708

It is negative value .it mean this value of x give us maxima of f(x).

Put this value of x in f(x).

f(x)=(119)3)3(119)3)26(119)3)+5f(x)=(\frac{1-\sqrt{\smash[b]{19}})}{3})^3-(\frac{1-\sqrt{\smash[b]{19}})}{3})^2-6(\frac{1-\sqrt{\smash[b]{19}})}{3})+5


=11.7984052203

This is maxima value.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS