Find the relative extreme values of the function f (x) = x3 − x2 − 6x + 5.
Given
f(x)=x3-x2-6x+5
We will find extreme
First of find 1st derivative of f(x)
f'(x)=3x2-2x-6
Put f'(x) equal to zero for extremize.
f'(x)=0
3x2-2x-6=0
Now find value of x.
"x=\\frac{[2\u00b1 \\sqrt{4-4.3(-6)}]}{2.3}\\\\\n\nx=\\frac{(1\u00b1\\sqrt{\\smash[b]{19}}) }{3}"
this values of x give us extreme value of f(x)
Now find second derivative of f(x) for find maxima or minima.
f''(x)= 6x-2
Now check
"x=\\frac{(1+\\sqrt{\\smash[b]{19}}) }{3}"
is give maxima or minima.
So put this value in f''(x)
"=6(\\frac{(1+\\sqrt{\\smash[b]{19}}) }{3})-2"
=8.717
It is positive value .it mean this value of x give us minima of f(x).
Put this value of x in f(x).
"f(x)=(\\frac{1+\\sqrt{\\smash[b]{19}})}{3})^3-(\\frac{1+\\sqrt{\\smash[b]{19}})}{3})^2-6(\\frac{1+\\sqrt{\\smash[b]{19}})}{3})+5"
=9.59802825019
This is minima value.
Now check
"x=\\frac{(1-\\sqrt{\\smash[b]{19}}) }{3}"
is give maxima or minima.
So put this value in f''(x)
"=6(\\frac{(1-\\sqrt{\\smash[b]{19}}) }{3})-2"
=-8.71779788708
It is negative value .it mean this value of x give us maxima of f(x).
Put this value of x in f(x).
"f(x)=(\\frac{1-\\sqrt{\\smash[b]{19}})}{3})^3-(\\frac{1-\\sqrt{\\smash[b]{19}})}{3})^2-6(\\frac{1-\\sqrt{\\smash[b]{19}})}{3})+5"
=11.7984052203
This is maxima value.
Comments
Leave a comment