First we calculate the constant
a0=π1∫−ππf(x)dx=π1∫0πsinxdx
=π1[−cosx]π0=−π1(cosπ−cos0)=π2 Find the Fourier coefficients for n=0
an=π1∫−ππf(x)cosnxdx
=π1∫0πsinxcos(nx)dx
=2π1∫0π(sin((n+1)x)−sin((n−1)x))dx
=2π1[−n+1cos((n+1)x)+n−1cos((n−1)x)]π0
=2π1((−1)nn+11−(−1)nn−11+n−11−n+11)
=2π1(−2k+1+12+2k+1−12)
=2π1(k1−k+11)
=2πk(k+1)1
bn=π1∫−ππf(x)sinnxdx
=π1∫0πsinxsin(nx)dx
=2π1∫0π(cos((n−1)x)−cos((n+1)x))dx
=2π1[n−1sin((n−1)x)−n+1sin((n+1)x)]π0
=2π1(0−0−0+0)=0
Thus, the Fourier series is
f(x)=π1+2πk(k+1)1cos((2k+1)x)
Comments