Obtain the Fourier series for the following function
f(x)=0 when -π<x<0
f(x)=sinx when 0<x<π
First we calculate the constant
"=\\dfrac{1}{\\pi}\\big[-\\cos x\\big]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}=-\\dfrac{1}{\\pi}(\\cos \\pi-\\cos 0)=\\dfrac{2}{\\pi}"
Find the Fourier coefficients for "n\\not=0"
"=\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{\\pi} \\sin x\\cos(nx)dx"
"=\\dfrac{1}{2\\pi}\\displaystyle\\int_{0}^{\\pi} (\\sin( (n+1)x)-\\sin((n-1)x))dx"
"=\\dfrac{1}{2\\pi}\\big[-\\dfrac{\\cos( (n+1)x)}{n+1}+\\dfrac{\\cos( (n-1)x)}{n-1}\\big]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{2\\pi}\\big((-1)^n\\dfrac{1}{n+1}-(-1)^n\\dfrac{1}{n-1}+\\dfrac{1}{n-1}-\\dfrac{1}{n+1}\\big)"
"=\\dfrac{1}{2\\pi}\\big(-\\dfrac{2}{2k+1+1}+\\dfrac{2}{2k+1-1}\\big)"
"=\\dfrac{1}{2\\pi}\\big(\\dfrac{1}{k}-\\dfrac{1}{k+1}\\big)"
"=\\dfrac{1}{2\\pi k(k+1)}"
"=\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{\\pi} \\sin x\\sin(nx)dx"
"=\\dfrac{1}{2\\pi}\\displaystyle\\int_{0}^{\\pi} (\\cos( (n-1)x)-\\cos((n+1)x))dx"
"=\\dfrac{1}{2\\pi}\\big[\\dfrac{\\sin( (n-1)x)}{n-1}-\\dfrac{\\sin( (n+1)x)}{n+1}\\big]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{2\\pi}\\big(0-0-0+0\\big)=0"
Thus, the Fourier series is
Comments
Leave a comment