Question #196716

Obtain the Fourier series for the following function


f(x)=0 when -π<x<0


f(x)=sinx when 0<x<π


1
Expert's answer
2021-05-25T05:40:58-0400

First we calculate the constant 


a0=1πππf(x)dx=1π0πsinxdxa_0=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{\pi}f(x)dx=\dfrac{1}{\pi}\displaystyle\int_{0}^{\pi} \sin xdx

=1π[cosx]π0=1π(cosπcos0)=2π=\dfrac{1}{\pi}\big[-\cos x\big]\begin{matrix} \pi \\ 0 \end{matrix}=-\dfrac{1}{\pi}(\cos \pi-\cos 0)=\dfrac{2}{\pi}

Find the Fourier coefficients for n0n\not=0


an=1πππf(x)cosnxdxa_n=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{\pi}f(x)\cos nxdx

=1π0πsinxcos(nx)dx=\dfrac{1}{\pi}\displaystyle\int_{0}^{\pi} \sin x\cos(nx)dx

=12π0π(sin((n+1)x)sin((n1)x))dx=\dfrac{1}{2\pi}\displaystyle\int_{0}^{\pi} (\sin( (n+1)x)-\sin((n-1)x))dx

=12π[cos((n+1)x)n+1+cos((n1)x)n1]π0=\dfrac{1}{2\pi}\big[-\dfrac{\cos( (n+1)x)}{n+1}+\dfrac{\cos( (n-1)x)}{n-1}\big]\begin{matrix} \pi \\ 0 \end{matrix}

=12π((1)n1n+1(1)n1n1+1n11n+1)=\dfrac{1}{2\pi}\big((-1)^n\dfrac{1}{n+1}-(-1)^n\dfrac{1}{n-1}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\big)

=12π(22k+1+1+22k+11)=\dfrac{1}{2\pi}\big(-\dfrac{2}{2k+1+1}+\dfrac{2}{2k+1-1}\big)

=12π(1k1k+1)=\dfrac{1}{2\pi}\big(\dfrac{1}{k}-\dfrac{1}{k+1}\big)

=12πk(k+1)=\dfrac{1}{2\pi k(k+1)}




bn=1πππf(x)sinnxdxb_n=\dfrac{1}{\pi}\displaystyle\int_{-\pi}^{\pi}f(x)\sin nxdx

=1π0πsinxsin(nx)dx=\dfrac{1}{\pi}\displaystyle\int_{0}^{\pi} \sin x\sin(nx)dx

=12π0π(cos((n1)x)cos((n+1)x))dx=\dfrac{1}{2\pi}\displaystyle\int_{0}^{\pi} (\cos( (n-1)x)-\cos((n+1)x))dx

=12π[sin((n1)x)n1sin((n+1)x)n+1]π0=\dfrac{1}{2\pi}\big[\dfrac{\sin( (n-1)x)}{n-1}-\dfrac{\sin( (n+1)x)}{n+1}\big]\begin{matrix} \pi \\ 0 \end{matrix}

=12π(000+0)=0=\dfrac{1}{2\pi}\big(0-0-0+0\big)=0


Thus, the Fourier series is


f(x)=1π+12πk(k+1)cos((2k+1)x)f(x)=\dfrac{1}{\pi}+\dfrac{1}{2\pi k(k+1)}\cos((2k+1)x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS