Question #194257

Use implicit differentiation to obtain dy over dx

Cosx +sinx=xsquared+ysquared


1
Expert's answer
2021-05-20T08:37:20-0400

Ans:-

Cosx+Sinx=x2+y2Cosx +Sinx=x^2+y^2\\ then y=Cosx+Sinxx2y=\sqrt{Cosx+Sinx-x^2}

Differentiate both side with respect to x

Sinx+Cosx=2x+2ydydxdydx=CosxSinx2x+2y\Rightarrow -Sinx+Cosx=2x+2y\dfrac{dy}{dx}\\ \Rightarrow \dfrac{dy}{dx}=\dfrac{Cosx-Sinx}{2x+2y}\\


dydx=CosxSinx2(x+Cosx+Sinxx2)\Rightarrow \dfrac{dy}{dx}=\dfrac{Cosx-Sinx}{2(x+\sqrt{Cosx+Sinx-x^2})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS