Use implicit differentiation to obtain dy over dx
Cosx +sinx=xsquared+ysquared
Ans:-
Cosx+Sinx=x2+y2Cosx +Sinx=x^2+y^2\\Cosx+Sinx=x2+y2 then y=Cosx+Sinx−x2y=\sqrt{Cosx+Sinx-x^2}y=Cosx+Sinx−x2
Differentiate both side with respect to x
⇒−Sinx+Cosx=2x+2ydydx⇒dydx=Cosx−Sinx2x+2y\Rightarrow -Sinx+Cosx=2x+2y\dfrac{dy}{dx}\\ \Rightarrow \dfrac{dy}{dx}=\dfrac{Cosx-Sinx}{2x+2y}\\⇒−Sinx+Cosx=2x+2ydxdy⇒dxdy=2x+2yCosx−Sinx
⇒dydx=Cosx−Sinx2(x+Cosx+Sinx−x2)\Rightarrow \dfrac{dy}{dx}=\dfrac{Cosx-Sinx}{2(x+\sqrt{Cosx+Sinx-x^2})}⇒dxdy=2(x+Cosx+Sinx−x2)Cosx−Sinx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments