Use the technique of differentiation to find dy over dx
Y=(xcube+7xsquared-8) (2x to the power -3 + x to the power -4)
"y=(x^3+7x^2-8)(2x^{-3}+x^{-4})\\newline\n\\text{differentiate w.r.t x,}\\newline\ny'=(x^3+7x^2-8)(-6x^{-4}-4x^{-5})+(2x^{-3}+x^{-4})(3x^2+14x)\\newline\n=-6x^{-1}-4x^{-2}-42x^{-2}-28x^{-3}+48x^{-4}+32x^{-5}+6x^{-1}+28x^{-2}+3x^{-2}+14x^{-3}\\newline\n=-15x^{-2}-14x^{-3}+48x^{-4}+32x^{-5}\n\n\\newline\n\\newline"
Comments
Leave a comment