Write a formula for the function g(x) that results when the graph of f(x)=x2 is horizontally stretched by a factor of 3, then shifted to the left 4 units, and then shifted down 3 units . Sketch the graph of f(x) fas well as the graph of the new transformed function g(x)
g(x)=?
"f(x)=x^2.\\newline\n\\text{horizontally stretched by a factor of 3.}\\newline\na(x)=f(\\frac{x}{3})=\\frac{x^2}{9}\\newline\\text{\nshifted to the left 4 units,}\\newline\nb(x)=a(x+4)=f(\\frac{x+4}{3})=\\frac{(x+4)^2}{9}\\newline\\text{\nshifted down 3 units,}\\newline\ng(x)=b(x)-3=a(x+4)-3=f(\\frac{x+4}{3})-3=\\frac{(x+4)^2}{9}-3\\newline\\text{\nThen, the required }g(x)=\\frac{(x+4)^2}{9}-3.\\newline"
Comments
Leave a comment