From the diagram, the height of the triangle is 6 + h 6+h 6 + h
We can as well gfrac{det the base using Pythagoras theorem.
b = 2 36 − h 2 b=2\sqrt{36-h^2} b = 2 36 − h 2
Thus, the area of the triangle is
A = 1 2 ( 2 36 − h 2 ) ( 6 + h ) = ( 36 − h 2 ( 6 + h ) A=\frac{1}{2}(2\sqrt{36-h^2})(6+h)=(\sqrt{36-h^2}(6+h) A = 2 1 ( 2 36 − h 2 ) ( 6 + h ) = ( 36 − h 2 ( 6 + h )
Find the derivative of A and set it to 0.
d A d h = 36 − h 2 − h ( 6 + h ) 36 − h 2 = 0 36 − h 2 − h ( 6 + h ) = 0 36 − 2 h 2 − 6 h = 0 h 2 + 3 h − 18 = 0 ( h − 3 ) ( h + 6 ) = 0 h = 3 , h = − 6 \frac{dA}{dh}=\sqrt{36-h^2}-\frac{h(6+h)}{\sqrt{36-h^2}}=0\\
36-h^2-h(6+h)=0\\
36-2h^2-6h=0\\
h^2+3h-18=0\\
(h-3)(h+6)=0\\
h=3,h=-6 d h d A = 36 − h 2 − 36 − h 2 h ( 6 + h ) = 0 36 − h 2 − h ( 6 + h ) = 0 36 − 2 h 2 − 6 h = 0 h 2 + 3 h − 18 = 0 ( h − 3 ) ( h + 6 ) = 0 h = 3 , h = − 6
Thus h=-6,3 are the critical points.
d 2 A d h 2 \frac{d^2A}{dh^2} d h 2 d 2 A at h=-6 >0, d 2 A d h 2 \frac{d^2A}{dh^2} d h 2 d 2 A at h=3<0.
Thus, h = 3 h=3 h = 3 is the maximum point.
The largest area of the triangle is
A = ( 36 − 3 2 ) ( 6 + 3 ) = 27 3 i n 2 A=(\sqrt{36-3^2})(6+3)=27\sqrt{3} in^2 A = ( 36 − 3 2 ) ( 6 + 3 ) = 27 3 i n 2
Comments