if a = 15 80° and b = 12i + 16j what is the magnitude of a - b
A⃗=(15,80∘)\vec{A}=(15,80^{\circ})A=(15,80∘)
=15cos80∘+15sin80∘=15cos80^{\circ}+15sin80^{\circ}=15cos80∘+15sin80∘
=2.61i+14.77j=2.61i+14.77j=2.61i+14.77j
B⃗=12i−16j\vec{B}=12i-16jB=12i−16j
SO, Vector (A−B=(2.61i+14.77j)−(12i−16j)({A-B}=(2.61i+14.77j)-(12i-16j)(A−B=(2.61i+14.77j)−(12i−16j)
=−9.39i+30.77j=-9.39i+30.77j=−9.39i+30.77j
Magnitude ∣(A−B∣=(−9.39)2+(30.77)2=88.17+946.79=1034.96=32.17|(A-B|=\sqrt{(-9.39)^2+(30.77)^2}=\sqrt{88.17+946.79}=\sqrt{1034.96}=32.17∣(A−B∣=(−9.39)2+(30.77)2=88.17+946.79=1034.96=32.17
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments