Determine the volume of the solid formed when the region enclosed by the curve y=√x, the x-axis, and the line x = 4, is revolved about the line x = 4.
V=π.∫abf(x)2dxV=\pi. \int _a^b f(x) ^2 dxV=π.∫abf(x)2dx
V=π.∫04x)2dxV= \pi. \int_0^4\sqrt x) ^2 dxV=π.∫04x)2dx
V=π.∫04xdxV=\pi. \int_0^4 x dxV=π.∫04xdx
V=π.[x2/2]04V=\pi. [x^2/2]_0^4V=π.[x2/2]04
V=π.[42/2]−π.[02/2]V= \pi. [4^2/2] - \pi. [0^2/2]V=π.[42/2]−π.[02/2]
V=8πV= 8\piV=8π
V=8×3.142V= 8 ×3.142V=8×3.142
V=25.136V=25.136V=25.136 cubic units
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments