Find the centroid of the solid generated if the region bounded by y = 2- x^2, x=0, and y=0 is revolved about the y-axis.
Answer:-
"y=2-x^2" , x=0 , y=0
Volume ="\\int_0^2x^2dy=\\pi\\int_0^2(2-y)dy"
="\\pi[2y-{1\\over 2}y^2]_0^2"
="\\pi[(2(2)-{1\\over 2}(2)^2)-(2(0)-{1\\over 2}(0)^2)]=2\\pi"
"\\therefore" Volume = "2\\pi"
find the coordinate for the centroid
"2-x^2=0 \\implies x=""2^{1\\over 2}" "\\implies x" =1.4142135623731 or x=-1.4142135623731 use positive value since we are given x=0 and y=0
y=f(x)="2-x^2"
x coordinate="{1\\over Volume}\\int_0^{1.4142135623731} xf(x)dx" = "{1\\over Area}\\int_0^{1.4142135623731}" x(2-"x^2" )dx
"=\\int_0^{1.4142135623731}(2x-x^3)dx"
="{1\\over 2\\pi}" "([{2 x^2\\over 2}-{x^4\\over 4}]_0^{1.4142135623731})"
="{1\\over 2\\pi}" "(({2( 1.4142135623731)^2\\over 2}-{1.4142135623731^4\\over 4})-({2(0)^2\\over 2}-{0^4\\over 4}))"
=0.26
y="2-0^2" =2
x=f(y)="(2-y)^{1\\over 2}"
y coordinate="{1\\over Volume}\\int_0^2 yf(y)dy" ="{1\\over 2\\pi }" "\\int_0^2" "y(2-y)^{1\\over 2}dy"
let u=2-y "\\implies" du=-dy "\\implies" dy=-du
u=2-y "\\implies" y=2-u
when y=0 , u=2-0=2 and when y=2 ,u=2-2=0
"\\int_0^2" "y(2-y)^{1\\over 2}dy" = "-\\int_2^0" "(2-u)u^{1\\over 2}du=-\\int_2^0(2u^{1\\over 2}-u^{3\\over 2})du"
"-\\int_2^0(2u^{1\\over 2}-u^{3\\over 2})du" ="-[{4\\over 3}u^{3\\over 2}-{2\\over 5}u^{5\\over 2}]_2^0"
="-[({4\\over 3}(0)^{3\\over 2}-{2\\over 5}(0)^{5\\over 2})-({4\\over 3}(2)^{3\\over 2}-{2\\over 5}(2)^{5\\over 2})]"
=-(-1.5084944665313)
=1.5084944665313
"\\implies y coordinate= {1\\over 2\\pi}(1.5084944665313)"
=0.24
"\\therefore" the centroid is (0.26 , 0.24)
Comments
Leave a comment