Question #193255

Find the centroid of the solid generated if the region bounded by y = 2- x^2, x=0, and y=0 is revolved about the y-axis.


1
Expert's answer
2021-06-07T10:23:39-0400

Answer:-

y=2x2y=2-x^2 , x=0 , y=0

Volume =02x2dy=π02(2y)dy\int_0^2x^2dy=\pi\int_0^2(2-y)dy


=π[2y12y2]02\pi[2y-{1\over 2}y^2]_0^2


=π[(2(2)12(2)2)(2(0)12(0)2)]=2π\pi[(2(2)-{1\over 2}(2)^2)-(2(0)-{1\over 2}(0)^2)]=2\pi



\therefore Volume = 2π2\pi

find the coordinate for the centroid

2x2=0    x=2-x^2=0 \implies x=2122^{1\over 2}     x\implies x =1.4142135623731 or x=-1.4142135623731 use positive value since we are given x=0 and y=0

y=f(x)=2x22-x^2

x coordinate=1Volume01.4142135623731xf(x)dx{1\over Volume}\int_0^{1.4142135623731} xf(x)dx = 1Area01.4142135623731{1\over Area}\int_0^{1.4142135623731} x(2-x2x^2 )dx


=01.4142135623731(2xx3)dx=\int_0^{1.4142135623731}(2x-x^3)dx

=12π{1\over 2\pi} ([2x22x44]01.4142135623731)([{2 x^2\over 2}-{x^4\over 4}]_0^{1.4142135623731})


=12π{1\over 2\pi} ((2(1.4142135623731)221.414213562373144)(2(0)22044))(({2( 1.4142135623731)^2\over 2}-{1.4142135623731^4\over 4})-({2(0)^2\over 2}-{0^4\over 4}))

=0.26

y=2022-0^2 =2

x=f(y)=(2y)12(2-y)^{1\over 2}

y coordinate=1Volume02yf(y)dy{1\over Volume}\int_0^2 yf(y)dy =12π{1\over 2\pi } 02\int_0^2 y(2y)12dyy(2-y)^{1\over 2}dy

let u=2-y     \implies du=-dy     \implies dy=-du

u=2-y     \implies y=2-u

when y=0 , u=2-0=2 and when y=2 ,u=2-2=0

02\int_0^2 y(2y)12dyy(2-y)^{1\over 2}dy = 20-\int_2^0 (2u)u12du=20(2u12u32)du(2-u)u^{1\over 2}du=-\int_2^0(2u^{1\over 2}-u^{3\over 2})du

20(2u12u32)du-\int_2^0(2u^{1\over 2}-u^{3\over 2})du =[43u3225u52]20-[{4\over 3}u^{3\over 2}-{2\over 5}u^{5\over 2}]_2^0

=[(43(0)3225(0)52)(43(2)3225(2)52)]-[({4\over 3}(0)^{3\over 2}-{2\over 5}(0)^{5\over 2})-({4\over 3}(2)^{3\over 2}-{2\over 5}(2)^{5\over 2})]

=-(-1.5084944665313)

=1.5084944665313

    ycoordinate=12π(1.5084944665313)\implies y coordinate= {1\over 2\pi}(1.5084944665313)

=0.24

\therefore the centroid is (0.26 , 0.24)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS