Consider the R2−R function f defined by f(x,y) = x−2y. Prove from first principles that lim(x,y)→(2,1) f(x,y)=0.
Ans:-
Given that f(x,y)=x−2yf(x,y) = x−2yf(x,y)=x−2y which belongs to R2−R function
⇒lim(x,y)→(2,1)f(x,y)\Rightarrow lim_{(x,y)→(2,1)} f(x,y)⇒lim(x,y)→(2,1)f(x,y)
applying first principal
⇒limh→0f(x+h,y+h)−f(x)h⇒limh→0(x+h)−2(y+h)−(x−2y)h⇒=0\Rightarrow lim_{h\to 0}\dfrac{f(x+h,y+h)-f(x)}{h}\\ \Rightarrow lim_{h\to 0}\dfrac{(x+h)-2(y+h)-(x-2y)}{h}\\ \Rightarrow =0⇒limh→0hf(x+h,y+h)−f(x)⇒limh→0h(x+h)−2(y+h)−(x−2y)⇒=0
Hence lim(x,y)→(2,1)f(x,y)=0lim_{(x,y)→(2,1)} f(x,y)=0lim(x,y)→(2,1)f(x,y)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments