z=x3y+3xy4,x=sin2ty=cos2tdz/dx,t=0 by choin rule dtdz=∂x∂zdtdx+∂y∂zdtdy=dtdz=(3x2y+3y4)⋅2⋅cos(2t)+(x3+12xy3)⋅2⋅cost⋅(−sint)t=0dtdz=(3x2y+3y4)⋅2cos(2⋅0)+(x3+12xy3)⋅(−2cos(0)⋅sin(0))dtdz=3x2y+3y4⋅2+0x=sin(2⋅0)=0,y=cos2(0)=1dtdz=3⋅(0)2⋅1+3⋅(1)4⋅2=6
Comments