If z= x^3y+ 3xy^4 where x= sin 2t and y= cos^2t .
Find dz/dx |t=0 by using chain rule.
"\\begin{array}{l}\n\\qquad \\begin{array}{l}\nz=x^{3} y+3 x y^{4}, \\quad x=\\sin 2 t \\\\\ny=\\cos ^{2} t\n\\end{array} \\\\\nd z \/ d x, t=0 \\text { by choin rule } \\\\\n\\frac{d z}{d t}=\\frac{\\partial z}{\\partial x} \\frac{d x}{d t}+\\frac{\\partial z}{\\partial y} \\frac{d y}{d t}= \\\\\n\\frac{d z}{d t}=\\left(3 x^{2} y+3 y^{4}\\right) \\cdot 2 \\cdot \\cos (2 t)+\\left(x^{3}+12 x y^{3}\\right) \\cdot 2 \\cdot \\cos t \\cdot(-\\sin t) \\\\\nt=0 \\quad \\frac{d z}{d t}=\\left(3 x^{2} y+3 y^{4}\\right) \\cdot 2 \\cos (2 \\cdot 0)+\\left(x^{3}+12 x y^{3}\\right) \\cdot(-2 \\cos (0) \\cdot \\sin (0)) \\\\\n\\frac{d z}{d t}=3 x^{2} y+3 y^{4} \\cdot 2+0 \\\\\nx=\\sin (2 \\cdot 0)=0, \\quad y=\\cos ^{2}(0)=1 \\\\\n\\frac{d z}{d t}=3 \\cdot(0)^{2} \\cdot 1+3 \\cdot(1)^{4} \\cdot 2=6\n\\end{array}"
Comments
Leave a comment