Determine the area of the region bounded by the given set of curves. x=e^y, x=1, y=1 and y=2
x=ey,x=1,y=1,y=2x=e^y,x=1,y=1,y=2x=ey,x=1,y=1,y=2
Area under curve is A=∫abf(x)dxA=\int_a^bf(x) dxA=∫abf(x)dx
y=1,y=2,x=1y=1,y=2,x=1y=1,y=2,x=1
F(x)⇒x=ey⇒y=ln(x)F(x)\Rightarrow x=e^y\Rightarrow y=ln(x)F(x)⇒x=ey⇒y=ln(x)
Area A=∫12ln(x)dxA=\int_1^2 ln(x)dxA=∫12ln(x)dx
=[xln∣x∣−x]12=[2ln∣2∣−2−(1ln∣1∣−1)]=2ln∣2∣−2+1=2×0.693−1=0.386=[xln|x|-x]_1^2 \\ =[2ln|2|-2-(1ln|1|-1)] \\ =2ln|2|-2+1 \\ =2\times 0.693-1=0.386=[xln∣x∣−x]12=[2ln∣2∣−2−(1ln∣1∣−1)]=2ln∣2∣−2+1=2×0.693−1=0.386
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments