Find the surface area of the part of the sphere
x^2+y^2+z^2=9
lying above the ellipse
x^2/4 + y^2/9 =1
"x^2+y^2+z^2=9"
"z^2=9-x^2-y^2"
"2z(\\partial z\/\\partial x)=-2x"
"\\partial z\/\\partial x=-x\/z"
"2z(\\partial z\/\\partial y)=-2y"
"\\partial z\/\\partial y=-y\/z"
"1+(\\partial z\/\\partial x)^2+(\\partial z\/\\partial y)^2=1+\\dfrac{x^2}{z^2}+\\dfrac{y^2}{z^2}"
"=\\dfrac{z^2+x^2+y^2}{z^2}=\\dfrac{9}{z^2}"
"z^2=9-x^2-y^2, z\\geq0"
"S=\\int\\int_D\\sqrt{1+(\\partial z\/\\partial x)^2+(\\partial z\/\\partial y)^2}dxdy"
"=\\int\\int_D\\dfrac{3}{\\sqrt{9-x^2-y^2}}dxdy"
"\\dfrac{x^2}{4}+\\dfrac{y^2}{9}\\leq1"
"x=2r\\cos\\theta, y=3r\\sin\\theta"
"\\dfrac{\\partial(x,y)}{\\partial(r,\\theta)}=\\begin{vmatrix}\n 2\\cos\\theta & -2r\\sin\\theta \\\\\n 3\\sin\\theta & 3r\\cos\\theta\n\\end{vmatrix}=6r"
"S=\\int\\int_G\\dfrac{6r}{\\sqrt{9-4r^2\\cos^2\\theta-9r^2\\sin^2\\theta}}drd\\theta"
"=6\\displaystyle\\int_{0}^{2\\pi}\\bigg(\\dfrac{3-\\sqrt{5}\\sin\\theta}{4+5\\cos^2\\theta}\\bigg)d\\theta"
"=6\\pi"
"S=6\\pi" square units
Comments
Leave a comment