y=2−x2 , x=0 , y=0
Volume =∫02x2dy=π∫02(2−y)dy
=π[2y−21y2]02
=π[(2(2)−21(2)2)−(2(0)−21(0)2)]=2π
∴ Volume = 2π
find the coordinate for the centroid
2−x2=0⟹x=221 ⟹x =1.4142135623731 or x=-1.4142135623731 use positive value since we are given x=0 and y=0
y=f(x)=2−x2
x coordinate=Volume1∫01.4142135623731xf(x)dx = Area1∫01.4142135623731 x(2-x2 )dx
=∫01.4142135623731(2x−x3)dx
=2π1 ([22x2−4x4]01.4142135623731)
=2π1 ((22(1.4142135623731)2−41.41421356237314)−(22(0)2−404))
=0.26
y=2−02 =2
x=f(y)=(2−y)21
y coordinate=Volume1∫02yf(y)dy =2π1 ∫02 y(2−y)21dy
let u=2-y ⟹ du=-dy ⟹ dy=-du
u=2-y ⟹ y=2-u
when y=0 , u=2-0=2 and when y=2 ,u=2-2=0
∫02 y(2−y)21dy = −∫20 (2−u)u21du=−∫20(2u21−u23)du
−∫20(2u21−u23)du =−[34u23−52u25]20
=−[(34(0)23−52(0)25)−(34(2)23−52(2)25)]
=-(-1.5084944665313)
=1.5084944665313
⟹ycoordinate=2π1(1.5084944665313)
=0.24
∴ the centroid is (0.26 , 0.24)
Comments