Question #194256

Use implicit differenciation to obtain dy over dx

X over y+1 = xsquared+3y


1
Expert's answer
2021-05-19T17:16:48-0400

Given xy+1=x2+3y\frac{x}{y}+1 = x^2 + 3y


Differentiating both sides,

ddx(xy+1)=ddx(x2+3y)\frac{d}{dx}( \frac{x}{y}+1) =\frac{d}{dx}( x^2 + 3y)


1yxy2dydx=2x+3dydx\frac{1}{y} - \frac{x}{y^2}\frac{dy}{dx} = 2x+3\frac{dy}{dx}


It can be written as,

1y2x=3dydx+xy2dydx\frac{1}{y} - 2x= 3\frac{dy}{dx}+\frac{x}{y^2}\frac{dy}{dx}


12xyy=(3+xy2)dydx\frac{1-2xy}{y}= (3+\frac{x}{y^2})\frac{dy}{dx}

12xyy=3y2+xy2dydx\frac{1-2xy}{y} = \frac{3y^2+x}{y^2}\frac{dy}{dx}


dydx=(12xy)y3y2+x\frac{dy}{dx} = \frac{(1-2xy)y}{3y^2+x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS