Use implicit differenciation to obtain dy over dx
X over y+1 = xsquared+3y
Given xy+1=x2+3y\frac{x}{y}+1 = x^2 + 3yyx+1=x2+3y
Differentiating both sides,
ddx(xy+1)=ddx(x2+3y)\frac{d}{dx}( \frac{x}{y}+1) =\frac{d}{dx}( x^2 + 3y)dxd(yx+1)=dxd(x2+3y)
1y−xy2dydx=2x+3dydx\frac{1}{y} - \frac{x}{y^2}\frac{dy}{dx} = 2x+3\frac{dy}{dx}y1−y2xdxdy=2x+3dxdy
It can be written as,
1y−2x=3dydx+xy2dydx\frac{1}{y} - 2x= 3\frac{dy}{dx}+\frac{x}{y^2}\frac{dy}{dx}y1−2x=3dxdy+y2xdxdy
1−2xyy=(3+xy2)dydx\frac{1-2xy}{y}= (3+\frac{x}{y^2})\frac{dy}{dx}y1−2xy=(3+y2x)dxdy
1−2xyy=3y2+xy2dydx\frac{1-2xy}{y} = \frac{3y^2+x}{y^2}\frac{dy}{dx}y1−2xy=y23y2+xdxdy
dydx=(1−2xy)y3y2+x\frac{dy}{dx} = \frac{(1-2xy)y}{3y^2+x}dxdy=3y2+x(1−2xy)y
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments