Use implicit differenciation to obtain dy over dx
X over y+1 = xsquared+3y
Given "\\frac{x}{y}+1 = x^2 + 3y"
Differentiating both sides,
"\\frac{d}{dx}( \\frac{x}{y}+1) =\\frac{d}{dx}( x^2 + 3y)"
"\\frac{1}{y} - \\frac{x}{y^2}\\frac{dy}{dx} = 2x+3\\frac{dy}{dx}"
It can be written as,
"\\frac{1}{y} - 2x= 3\\frac{dy}{dx}+\\frac{x}{y^2}\\frac{dy}{dx}"
"\\frac{1-2xy}{y}= (3+\\frac{x}{y^2})\\frac{dy}{dx}"
"\\frac{1-2xy}{y} = \\frac{3y^2+x}{y^2}\\frac{dy}{dx}"
"\\frac{dy}{dx} = \\frac{(1-2xy)y}{3y^2+x}"
Comments
Leave a comment