To find the intervals of increase/decrease of f(x), we need to find intervals, where its derivative is positive and negative respectively.
(a) f(x)=x3+4x+1,f′(x)=3x2+4⩾4∀x∈R , so f(x) increases at whole real number axis
(b) f(x)=x3(5−x)2
f′(x)=3x2(5−x)2+x3⋅2(5−x)⋅(−1)==x2(x−5)⋅(3(x−5)+2x)=x2(x−5)5(x−3) , and f'(x) sign is the same that sign of (x−3)(x−5): it's <0 (f(x) decreases) for x∈(3,5) , it's >0 (f(x) increases) for x∈(−∞,3)∪(5,+∞)
(c) f(x)=x+sinx,f′(x)=1+cosx⩾0∀x∈R , so f(x) increases in all points except f'(x) nulls : {x∈R:cosx=−1}={π+2πn,n∈Z}
(d) f(x)=x2−4,f′(x)=2x , and ∀x∈(−∞,0)f′(x)<0 (f(x) decreases), and∀x∈(0,+∞)f′(x)>0 (f(x) increases)
(e) f(x)=2x3−9x2+12x,f′(x)=6x2−18x+12 , so f′(x)=6(x2−3x+2)=6(x−1)(x−2) and ∀x∈(1,2)f′(x)<0 (f(x) decreases), and ∀x∈(−∞,1)∪(2,+∞)f′(x)>0 (f(x) increases)
(f) f(x)=(x2−4)2,f′(x)=2(x2−4)⋅2x , f′(x)=4(x+2)x(x−2) , so ∀x∈(−∞,−2)∪(0,2)f′(x)<0 (f(x) decreases), ∀x∈(−2,0)∪(2,+∞)f′(x)>0 (f(x) increases)
(g) f(x)=x3−2x2+x+5,f′(x)=3x2−4x+1 , so f′(x)=(3x−1)(x−1) and ∀x∈(31,1)f′(x)<0 (f(x) decreases), and ∀x∈(−∞,31)∪(1,+∞)f′(x)>0(f(x) increases)
Comments