Answer to Question #181813 in Calculus for desmond

Question #181813

Find the intervals of increase and decrease for the following functions: (a) f(x) = x 3 + 4x + 1 (b) f(x) = x 3 (5 − x) 2 . (c) f(x) = x + sin x. (d) f(x) = (x 2 − 4). (e) f(x) = 2x 3 − 9x 2 + 12x (f) f(x) = (x 2 − 4)2 (g) f(x) = x 3 − 2x 2 + x + 5 


1
Expert's answer
2021-04-25T16:17:54-0400

To find the intervals of increase/decrease of f(x), we need to find intervals, where its derivative is positive and negative respectively.

(a) "f(x) = x^3 +4x + 1, f'(x) = 3x^2+4 \\geqslant 4\\:\\:\\forall x \\in \\mathbb{R}" , so f(x) increases at whole real number axis

(b) "f(x) = x^3(5-x)^2"

"f'(x) = 3x^2(5-x)^2 + x^3 \\cdot2(5-x) \\cdot (-1) = \\\\\n= x^2(x-5) \\cdot (3(x-5)+2x) = x^2(x-5)5(x-3)" , and f'(x) sign is the same that sign of "(x-3)(x-5) :" it's "< 0" for "x \\in (3, 5)" , it's ">0" for "x \\in (-\\infty, 3) \\cup(5, +\\infty)"

(c) "f(x) = x+\\text{sin}x, f'(x) = 1+\\text{cos}x \\geqslant 0 \\:\\: \\forall x \\in \\mathbb{R}" , so f(x) increases in all points except f'(x) nulls : "\\{x \\in \\mathbb{R}: \\text{cos}x = -1\\} = \\{\\pi+2\\pi n, n \\in \\mathbb{Z}\\}"

(d) "f(x) = x^2-4, f'(x) = 2x" , and "\\forall x \\in (-\\infty, 0) \\: f'(x)<0" , and "\\forall x \\in (0, +\\infty) \\: f'(x)>0"

(e) "f(x) = 2x^3-9x^2+12x, f'(x) = 6x^2-18x+12" , so "f'(x) = 6(x^2-3x+2) = 6(x-1)(x-2)" and "\\forall x \\in (1, 2) \\: f'(x)<0" , and "\\forall x \\in (-\\infty, 1)\\cup(2, +\\infty) \\: f'(x)>0"

(f) "f(x) = (x^2-4)^2, f'(x) = 2(x^2-4)\\cdot2x" , "f'(x) = 4(x+2)x(x-2)" , so "\\forall x \\in (-\\infty, -2)\\cup(0, 2) \\: f'(x)<0" , "\\forall x \\in (-2, 0)\\cup(2, +\\infty) \\: f'(x)>0"

(g) "f(x) = x^3-2x^2+x+5, f'(x) = 3x^2-4x+1" , so "f'(x) = (3x-1)(x-1)" and "\\forall x \\in (\\frac{1}{3}, 1) \\: f'(x)<0" , and "\\forall x \\in (-\\infty, \\frac{1}{3})\\cup(1, +\\infty) \\: f'(x)>0"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS