Use the Mean Value Theorem to establish the following inequalities (a) x < sin−1 x < x √ 1 − x 2 for 0 < x < 1. (b) e a (x − a) < ex − e a < ex (x − a) if a < x. (c) e x > x + 1, ∀ x > 0. (d) |sin x − sin y| ≤ |x − y| ∀x, y ∈ R. (e) x 1 + x < ln(1 + x) < x for −1 < x < 0 , x > 0
a) x < sin-1 x < x√ 1-x2 ∀ x ∈ (0,1)
Let f(x) = sin-1 x
f'(x) = 1/ √ 1-x2
From Mean Value Theorem,
[f(b) - f(a)] / (b-a) = f'(c)
Let 0 < c < x < 1
So from MVT we have
(sin-1 x - sin-1 0) / x = 1/ √ 1-c2
sin-1 x / x = 1/ √ 1-c2 ................................(1)
0 < c < x
0 < c2 < x2
1-x2 < 1-c2 < 1
1 < 1/ √ 1-c2 < 1/ √ 1-x2
x < sin-1 x/ x < x/ √ 1-x2 .................from equation (1)
b) e a (x-a) < ex - e a < e x (x-a) if a<x
Let f(x) = ex
f'(x) = ex
From Mean Value Theorem,
f(b) - f(a)/ (b-a) = f'(c) ∀ c ∈ (a,b)
let a < x < b
so
ex - e a /(x-a) = e c .............................(2)
a < c < x
e a < e c < ex
e a (x-a) < ex - e a < e x (x-a) ..................from equation (2)
c) ex > x+1 ∀ x >0
Let f(x) = ex - x- 1
f'(x) = ex -1
Now since x> 0
So f'(x) >0
Hence, f(x) is an increasing function ∀ x > 0
So ex -x-1>0
ex > x+1
d) |sin x - sin y| <= |x - y| ∀ x,y ∈ R
Let f(x) = sin x
f'(x) = cos x
From Mean Value Theorem
f(b) - f(a) / (b-a) = f'(c)
sin b - sin a /( b-a) = cos c
| (sin b - sin a ) / (b-a) | = | cos c | .............(1)
Now, | cos c | <= 1 ...............(2)
| (sin b - sin a ) / (b-a) | <=1 .............from equation (1) and (2)
| (sin b - sin a ) | <= | b-a|
Replacing b → x and a → y we have
| (sin x - sin y ) | <= | x-y |
e) x/ (1+x) < ln (1+x) < x ∀ x ∈ (-1,0)
let f(x) = ln x
f'(x) = 1/x
From Mean Value Theorem
f(b) - f(a) / (b-a) = f'(c)
ln (b) - ln (a) = (b-a) /c .....................(1)
a < c < b
1/b < 1/c < 1/a
(b-a)/b < (b-a)/c < (b-a)/a
(b-a)/b < ln(b) - ln(a) < (b-a)/a
Replacing b → 1+x and a → 1 we have
x/(1+x) < ln(1+x) < x
Comments
Dear Asubonteng Isaac Adjei, thank you for clarifying conditions of the question.
Use the Mean Value Theorem to establish the following inequalities (a) x < sin−1x < x √ 1 −x2 for 0 < x x+1, ∀x >0. (d) |sinx −siny| ≤ |x−y| ∀x,y ∈ R. x (e) 1 +x
Leave a comment