Find the directional derivative of f(x,y,z)=(x^2+y^2+z^2)^-1/2 at (3,1,2) on the direction of (yzi^ +xzj^ +xyk^)
1
Expert's answer
2021-05-02T05:16:53-0400
f(x,y,z)=(x2+y2+z2)−21∂x∂f(x,y,z)=−x(x2+y2+z2)−23∂x∂f(x,y,z)∣∣(3,1,2)=−3(14)−23∂y∂f(x,y,z)=−y(x2+y2+z2)−23∂y∂f(x,y,z)∣∣(3,1,2)=−(14)−23∂z∂f(x,y,z)=−z(x2+y2+z2)−23∂z∂f(x,y,z)∣∣(3,1,2)=−2(14)−23∇f(x,y,z)=−(14)−23(3i+j+2k)Letube a unit vectoru=yzi+xzj+xyku^=(yz)2+(xz)2+(xy)2(yz,xz,xy)∴Directional derivative(∇uf)=−(14)−23(3,1,2)×(yz)2+(xz)2+(xy)2(yz,xz,xy)=(yz)2+(xz)2+(xy)2−(14)−23(3yz+xz+2xy)
Comments