Find the directional derivative of f(x,y,z)=(x^2+y^2+z^2)^-1/2 at (3,1,2) on the direction of (yzi^ +xzj^ +xyk^)
"\\displaystyle\nf(x,y,z)=\\left(x^2+y^2+z^2\\right)^{-\\frac{1}{2}} \\\\\n\n\\frac{\\partial f(x,y,z)}{\\partial x} = -x\\left(x^2+y^2+z^2\\right)^{-\\frac{3}{2}}\\\\\n\n\n\\frac{\\partial f(x,y,z)}{\\partial x}\\biggr\\vert_{(3, 1, 2)} = -3(14)^{-\\frac{3}{2}}\\\\\n\n\n\\frac{\\partial f(x,y,z)}{\\partial y} = -y\\left(x^2+y^2+z^2\\right)^{-\\frac{3}{2}} \\\\\n\n\\frac{\\partial f(x,y,z)}{\\partial y}\\biggr\\vert_{(3, 1, 2)} = -(14)^{-\\frac{3}{2}}\\\\\n\n\n\\frac{\\partial f(x,y,z)}{\\partial z} = -z\\left(x^2+y^2+z^2\\right)^{-\\frac{3}{2}}\\\\\n\n\\frac{\\partial f(x,y,z)}{\\partial z}\\biggr\\vert_{(3, 1, 2)} = -2(14)^{-\\frac{3}{2}}\\\\\n\n\n\\nabla f(x, y, z) = -(14)^{-\\frac{3}{2}}(3\\textbf{i} + \\textbf{j} + 2\\textbf{k})\\\\\n\n\n\\textsf{Let}\\,\\, u\\,\\, \\textsf{be a unit vector}\\\\\n\n\nu = yz\\textbf{i} + xz\\textbf{j} + xy\\textbf{k}\\\\\n\n\n\\hat{u} = \\frac{(yz, xz, xy)}{\\sqrt{(yz)^2 + (xz)^2 + (xy)^2}}\\\\\n\n\n\\therefore\\textsf{Directional derivative}\\,\\,(\\nabla_u f) = -(14)^{-\\frac{3}{2}}(3, 1, 2) \\times \\frac{(yz, xz, xy)}{\\sqrt{(yz)^2 + (xz)^2 + (xy)^2}} \\\\= \\frac{-(14)^{-\\frac{3}{2}}\\left(3yz + xz + 2xy\\right)}{\\sqrt{(yz)^2 + (xz)^2 + (xy)^2}}"
Comments
Leave a comment