verify green's theorem by the force field F(x,y)= x^2 i - xy j , in moving a particle along the circle with in the first quadrent (x^2 + y-2)^2 = 4
Let's find work of the field directly:
"W = \\int\\limits_C {{x^2}} dx - xydy"
Parametric equation of a circle:
"x = 2\\cos t \\Rightarrow dx = - 2\\sin tdt,\\,\\,y = 2\\sin t + 2 \\Rightarrow dy = 2\\cos tdt,\\,\\, - \\frac{\\pi }{2} < t < \\frac{\\pi }{2}"
Then
"W = \\int\\limits_C {{x^2}} dx - xydy = \\int\\limits_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} {4{{\\cos }^2}t( - 2\\sin t)dt - 4\\cos t(\\sin t + 1) \\cdot 2\\cos tdt} = 8\\int\\limits_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} {{{\\cos }^2}td\\cos t + 8} \\int\\limits_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} {{{\\cos }^2}td\\cos t} - 8\\int\\limits_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} {{{\\cos }^2}tdt} = \\frac{{16}}{3}{\\cos ^3}\\left. t \\right|_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} - 2\\int\\limits_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} {(1 + \\cos 2t)d2t} = 0 - 2\\left( {2\\left. t \\right|_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}} + \\sin 2\\left. t \\right|_{ - \\frac{\\pi }{2}}^{\\frac{\\pi }{2}}} \\right) = - 4\\pi"
Let's find
"\\frac{{\\partial P}}{{\\partial y}} = \\frac{{\\partial {x^2}}}{{\\partial y}} = 0;\\,\\,\\frac{{\\partial Q}}{{\\partial x}} = \\frac{{\\partial \\left( { - xy} \\right)}}{{\\partial x}} = - y"
Then, by Green's theorem, work is
"W = \\int {\\int\\limits_D {\\left( {\\frac{{\\partial Q}}{{\\partial x}} - \\frac{{\\partial P}}{{\\partial y}}} \\right)} } dxdy = - \\int {\\int\\limits_D y } dxdy"
Let's move on to polar coordinates:
"x = r\\cos \\varphi ,\\,\\,y = r\\sin \\varphi ,\\,\\,0 < \\varphi < \\frac{\\pi }{2}"
"{x^2} + {(y - 2)^2} = 4 \\Rightarrow {r^2}{\\cos ^2}\\varphi + {r^2}{\\sin ^2}\\varphi - 4r\\sin \\varphi + 4 = 4 \\Rightarrow {r^2} = 4r\\sin \\varphi \\Rightarrow r = 4\\sin \\varphi"
Then
"0 < r < 4\\sin \\varphi"
So
"W = - \\int {\\int\\limits_D y } dxdy = - \\int\\limits_0^{\\frac{\\pi }{2}} {d\\varphi } \\int\\limits_0^{4\\sin \\varphi } {r\\sin \\varphi \\cdot rdr} = - \\frac{1}{3}\\int\\limits_0^{\\frac{\\pi }{2}} {\\sin \\varphi \\left. { \\cdot {r^3}} \\right|_0^{4\\sin \\varphi }d\\varphi } = - \\frac{1}{3}\\int\\limits_0^{\\frac{\\pi }{2}} {64{{\\sin }^4}\\varphi d\\varphi } = - \\frac{{64}}{3}\\int\\limits_0^{\\frac{\\pi }{2}} {{{\\left( {\\frac{{1 - \\cos 2\\varphi }}{2}} \\right)}^2}} d\\varphi = - \\frac{{16}}{3}\\int\\limits_0^{\\frac{\\pi }{2}} {\\left( {1 - 2\\cos 2\\varphi + {{\\cos }^2}2\\varphi } \\right)d\\varphi } = - \\frac{8}{3}\\int\\limits_0^{\\frac{\\pi }{2}} {\\left( {1 - 2\\cos 2\\varphi } \\right)} d2\\varphi - \\frac{8}{3}\\int\\limits_0^{\\frac{\\pi }{2}} {(1 + \\cos 4\\varphi )d\\varphi = - \\frac{8}{3}\\left( {2\\left. \\varphi \\right|_0^{\\frac{\\pi }{2}} - 2\\sin 2\\left. \\varphi \\right|_0^{\\frac{\\pi }{2}}} \\right)} - \\frac{2}{3}\\left( {4\\left. \\varphi \\right|_0^{\\frac{\\pi }{2}} + \\sin 4\\left. \\varphi \\right|_0^{\\frac{\\pi }{2}}} \\right) = - \\frac{8}{3}\\pi - \\frac{2}{3} \\cdot 2\\pi = - \\frac{{12}}{3}\\pi = - 4\\pi"
Since in both cases we obtained the same value of the work, Green's theorem holds.
Comments
Leave a comment