∫ ( 100 x 3 + 20 x 2 − 40 x ) d x = 25 x 4 + 20 x 3 / 3 − 20 x 3 + C \int(100x^3+20x^2-40x)dx=25x^4+20x^3/3-20x^3+C ∫ ( 100 x 3 + 20 x 2 − 40 x ) d x = 25 x 4 + 20 x 3 /3 − 20 x 3 + C
4 ∫ 1 0 2 x 2 d x 4\smallint10^{2x^2}dx 4 ∫ 1 0 2 x 2 d x
u = 2 x u=\sqrt{2}x u = 2 x
d u = 2 d x du=\sqrt2dx d u = 2 d x
4 ∫ 1 0 2 x 2 d x = 4 2 ∫ 1 0 u 2 d u = 4 π 2 3 / 2 l n ( 10 ) ∫ 2 l n ( 10 ) 1 0 u 2 π d u 4\smallint10^{2x^2}dx=\frac{4}{\sqrt2}\smallint10^{u^2}du=4\frac{\sqrt{π}}{ 2^{3/2}\sqrt{ln(10)}}\intop\frac{2\sqrt{ln(10)}10^{u^2}}{\sqrtπ}du 4 ∫ 1 0 2 x 2 d x = 2 4 ∫ 1 0 u 2 d u = 4 2 3/2 l n ( 10 ) π ∫ π 2 l n ( 10 ) 1 0 u 2 d u
∫ 2 l n ( 10 ) 1 0 u 2 π d u = e r f i ( l n ( 10 ) u ) \intop\frac{2\sqrt{ln(10)}10^{u^2}}{\sqrtπ}du=erfi(\sqrt{ln(10)}u) ∫ π 2 l n ( 10 ) 1 0 u 2 d u = er f i ( l n ( 10 ) u )
4 ∫ 1 0 2 x 2 d x = 4 π 2 3 / 2 l n ( 10 ) e r f i ( l n ( 10 ) u ) = 4 π 2 3 / 2 l n ( 10 ) e r f i ( l n ( 10 ) 2 x ) + C 4\smallint10^{2x^2}dx=4\frac{\sqrt{π}}{ 2^{3/2}\sqrt{ln(10)}}erfi(\sqrt{ln(10)}u)=4\frac{\sqrt{π}}{ 2^{3/2}\sqrt{ln(10)}}erfi(\sqrt{ln(10)}\sqrt2x)+C 4 ∫ 1 0 2 x 2 d x = 4 2 3/2 l n ( 10 ) π er f i ( l n ( 10 ) u ) = 4 2 3/2 l n ( 10 ) π er f i ( l n ( 10 ) 2 x ) + C
Comments