Answer to Question #176667 in Calculus for Joshua

Question #176667

Use the method of cylinders to determine the volume of the solid obtained by rotating the region bounded by y=1/x, x=1/2, x=4 and the x-axis about the y-axis.


1
Expert's answer
2021-05-02T08:11:42-0400

The volume of the solid generated by rotating this region about the y- axis may be found by adding the volumes of the solids generated by rotating the region bounded by x=4x=4, x=12x= \frac 12, y=1xy=\frac1x (v1) and the region bounded by x=4x=4, x=12x=\frac 12, y=1/4y=1/4 and the x-axis (v2).

v1=2π014yxdyv_1=2π∫_0^{\frac14}yx dy

=2π014y(412)dy=2π∫_0^{\frac14}y(4-\frac 12) dy

=2π014)72ydy=2π∫_0^{\frac14)} {\frac72} y dy

=[7πy22]014= [ \frac {7π y^2}2]^{\frac14}_0

=7π[(14)220]=7π [\frac{(\frac14)^2}2 -0]

=732πcubicunitsoflength=\frac 7{32}π cubic units of length

v2=2π142yxdy=2π142y(1y12)dyv_2=2π ∫_{\frac14}^2yx dy=2π∫_{\frac14}^2y(\frac1y- \frac 12)dy

=2π142(112y)dy=2π∫_{\frac14}^2(1- \frac12 y)dy

=2π[y14y2]142=2π[y-\frac14 y^2 ] ^2_{\frac14}

=2π[(214(2)2)(1414(14)2)]=2π[(2-\frac 14 (2)^2 )-(\frac 14-\frac 14 (\frac14)^2)]

=2π(11564)=2π(1- \frac {15}{64})

=4932πcubicunitsoflength=\frac {49}{32} π cubic units of length

ThetotalvolumeV=v1+v2The total volume V=v_1+v_2

=732π+4932π=\frac7{32}π+ \frac {49}{32} π

=74πcubicunitsoflength=\frac 74 π cubic units of length



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment