Use the method of cylinders to determine the volume of the solid obtained by rotating the region bounded by y=1/x, x=1/2, x=4 and the x-axis about the y-axis.
The volume of the solid generated by rotating this region about the y- axis may be found by adding the volumes of the solids generated by rotating the region bounded by "x=4", "x= \\frac 12", "y=\\frac1x" (v1) and the region bounded by "x=4", "x=\\frac 12", "y=1\/4" and the x-axis (v2).
"v_1=2\u03c0\u222b_0^{\\frac14}yx dy"
"=2\u03c0\u222b_0^{\\frac14}y(4-\\frac 12) dy"
"=2\u03c0\u222b_0^{\\frac14)} {\\frac72} y dy"
"= [ \\frac {7\u03c0 y^2}2]^{\\frac14}_0"
"=7\u03c0 [\\frac{(\\frac14)^2}2 -0]"
"=\\frac 7{32}\u03c0 cubic units of length"
"v_2=2\u03c0 \u222b_{\\frac14}^2yx dy=2\u03c0\u222b_{\\frac14}^2y(\\frac1y- \\frac 12)dy"
"=2\u03c0\u222b_{\\frac14}^2(1- \\frac12 y)dy"
"=2\u03c0[y-\\frac14 y^2 ] ^2_{\\frac14}"
"=2\u03c0[(2-\\frac 14 (2)^2 )-(\\frac 14-\\frac 14 (\\frac14)^2)]"
"=2\u03c0(1- \\frac {15}{64})"
"=\\frac {49}{32} \u03c0 cubic units of length"
"The total volume V=v_1+v_2"
"=\\frac7{32}\u03c0+ \\frac {49}{32} \u03c0"
"=\\frac 74 \u03c0 cubic units of length"
Comments
Leave a comment