Let us find the first quandrant area under the curve y=xe−x. For this firstly let us sketch the graph of y=xe−x:
It follows that the area A is
A=∫0+∞xe−xdx=a→+∞lim∫0axe−xdx=
∣u=x,dv=e−xdx,du=dx,v=−e−x∣
=a→+∞lim(−xe−x∣0a+∫0ae−xdx)=a→+∞lim(−ae−a−e−x∣0a)=a→+∞lim(−ae−a−e−a+1)=a→+∞limea−a−1+1=
| let us use the L'Hôpital's Rule |
=a→+∞limea−1+1=1
Comments