Find the area bounded by the curves y^2=4x and y=2x-4.
Curve "y^2 = 4x" is parabola and equation "y=2x-4" represent the straight line.
These two curves will intersect at "(4,4) , (1,-2)" .
To find the intersection point, simply solve the equation, "(2x-4)^2 = 4x"
"4x^2+16-16x=4x"
"\\implies x^2-5x+4=0"
"(x-1)(x-4)=0"
"x = 1, 4"
so "y=-2, 4"
Area under the curve is given by,
"A = \\int_{-2}^{4} |(\\frac{y+4}{2}) - \\frac{y^2}{4} |dy"
"A = \\int_{-2}^{0} |(\\frac{y+4}{2}) - \\frac{y^2}{4} |dy+ \\int_{0}^{4} |(\\frac{y+4}{2}) - \\frac{y^2}{4} |dy"
"A = | \\frac{1}{2}(\\frac{y^2}{2}+4y)-\\frac{1}{4}\\frac{y^3}{3} |_{-2}^{0} + | \\frac{1}{2}(\\frac{y^2}{2}+4y)-\\frac{1}{4}\\frac{y^3}{3} |_{0}^{4}"
Putting limits,
"A = | \\frac{1}{2}(\\frac{4}{2}-8)-\\frac{1}{4}\\frac{(-8)}{3} | + | \\frac{1}{2}(\\frac{16}{2}+16)-\\frac{1}{4}\\frac{64}{3} | = |\\frac{14}{6}|+|\\frac{20}{3}| = \\frac{54}{6}" square units.
Comments
Leave a comment