Question #176655

Find the area bounded by the curves y^2=4x and y=2x-4.


1
Expert's answer
2021-04-15T07:20:36-0400

Curve y2=4xy^2 = 4x is parabola and equation y=2x4y=2x-4 represent the straight line.

These two curves will intersect at (4,4),(1,2)(4,4) , (1,-2) .

To find the intersection point, simply solve the equation, (2x4)2=4x(2x-4)^2 = 4x

4x2+1616x=4x4x^2+16-16x=4x

    x25x+4=0\implies x^2-5x+4=0

(x1)(x4)=0(x-1)(x-4)=0

x=1,4x = 1, 4

so y=2,4y=-2, 4


Area under the curve is given by,

A=24(y+42)y24dyA = \int_{-2}^{4} |(\frac{y+4}{2}) - \frac{y^2}{4} |dy

A=20(y+42)y24dy+04(y+42)y24dyA = \int_{-2}^{0} |(\frac{y+4}{2}) - \frac{y^2}{4} |dy+ \int_{0}^{4} |(\frac{y+4}{2}) - \frac{y^2}{4} |dy

A=12(y22+4y)14y3320+12(y22+4y)14y3304A = | \frac{1}{2}(\frac{y^2}{2}+4y)-\frac{1}{4}\frac{y^3}{3} |_{-2}^{0} + | \frac{1}{2}(\frac{y^2}{2}+4y)-\frac{1}{4}\frac{y^3}{3} |_{0}^{4}

Putting limits,

A=12(428)14(8)3+12(162+16)14643=146+203=546A = | \frac{1}{2}(\frac{4}{2}-8)-\frac{1}{4}\frac{(-8)}{3} | + | \frac{1}{2}(\frac{16}{2}+16)-\frac{1}{4}\frac{64}{3} | = |\frac{14}{6}|+|\frac{20}{3}| = \frac{54}{6} square units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS