Curve y2=4x is parabola and equation y=2x−4 represent the straight line.
These two curves will intersect at (4,4),(1,−2) .
To find the intersection point, simply solve the equation, (2x−4)2=4x
4x2+16−16x=4x
⟹x2−5x+4=0
(x−1)(x−4)=0
x=1,4
so y=−2,4
Area under the curve is given by,
A=∫−24∣(2y+4)−4y2∣dy
A=∫−20∣(2y+4)−4y2∣dy+∫04∣(2y+4)−4y2∣dy
A=∣21(2y2+4y)−413y3∣−20+∣21(2y2+4y)−413y3∣04
Putting limits,
A=∣21(24−8)−413(−8)∣+∣21(216+16)−41364∣=∣614∣+∣320∣=654 square units.
Comments