Show that lim (|x| +1)= ∞
x→∞
For x>0
Lim"_{x\\rightarrow{\\infin}}" (x+1)
Limit = "\\infin"
For x<0
Lim"_{x\\rightarrow{\\infin}}" (-x+1)
as "{x\\rightarrow\\infin}"
So
Limit is not defined
Graph for |x| +1
So
"\\implies"
Lim"_{x\\rightarrow{\\infin}}" (|x|+1)
= "\\infin"
Comments
Leave a comment