Find the minimum value of the function
f(x, y) = x²+ 2y²on the circle x² + y²= 1.
Answer:1
GIVEN:
Function "f(x, y) = x\u00b2+ 2y\u00b2" ...........................1
constraints "g(x, y) \\implies x\u00b2+ y\u00b2=1" ..................2
now,
Using Lagrange theorem for multipliers
we get x=1,-1
and y=0
so after putting points (1,0) and (-1,0)
we get minimum value of function as 1.
Comments
Leave a comment