does the series ∑ 1/n⋅[1+(ln n)2] converge or diverge
n=1 below ∑
∞ on top of ∑
"\\sum _{n=1}^{\\infty \\:}\\frac{1}{n}\\left(1+\\left(\\ln \\left(n\\right)\\right)^2\\right)"
"As \\space a_n=\\frac{1}{n}\\left(1+\\left(\\ln \\left(n\\right)\\right)^2\\right) ; a_x=\\frac{1}{x}\\left(1+\\left(\\ln \\left(x\\right)\\right)^2\\right)"
"L= \\int_1^\\infin \\frac{1}{x}\\left(1+\\left(\\ln \\left(x\\right)\\right)^2\\right)=\\ln \\left|x\\right|+\\frac{1}{3}\\ln ^3\\left(x\\right)+C|_1^\\infin =\\infin"
Hence "\\sum _{n=1}^{\\infty \\:}\\frac{1}{n}\\left(1+\\left(\\ln \\left(n\\right)\\right)^2\\right)" diverges
Comments
Leave a comment