Question #174307

8: Convergence of summation (n!(n+1)!)/(3n)!

9: Radius of convergence of summation n=0 to infinity (n^3)x^3n/n^4+1


1
Expert's answer
2021-03-24T13:49:41-0400

8: Let us study the convergence of summation n=1n!(n+1)!(3n)!\sum_{n=1}^{\infty}\frac{n!(n+1)!}{(3n)!}. Let us use the D'Alembert's rule.


Taking into account that


limn((n+1)!(n+2)!(3(n+1))!:n!(n+1)!(3n)!)=limn((n+1)n!(n+2)(n+1)!(3n+3)!(3n)!n!(n+1)!)=limn(n+1)(n+2)(3n+3)(3n+2)(3n+1)=limn(1+1n)(1+2n)(3+3n)(3+2n)(3n+1)=0<1\lim\limits_{n\to \infty}(\frac{(n+1)!(n+2)!}{(3(n+1))!}:\frac{n!(n+1)!}{(3n)!})= \lim\limits_{n\to \infty}(\frac{(n+1)n!(n+2)(n+1)!}{(3n+3)!}\cdot\frac{(3n)!}{n!(n+1)!})= \lim\limits_{n\to \infty}\frac{(n+1)(n+2)}{(3n+3)(3n+2)(3n+1)}= \lim\limits_{n\to \infty}\frac{(1+\frac{1}{n})(1+\frac{2}{n})}{(3+\frac{3}{n})(3+\frac{2}{n})(3n+1)}=0<1


we conclude that n=1n!(n+1)!(3n)!\sum_{n=1}^{\infty}\frac{n!(n+1)!}{(3n)!} is convergent.


9: Let us find the radius of convergence of summation n=0n3x3nn4+1\sum_{ n=0}^{\infty}\frac{ n^3x^{3n}}{n^4+1}. Let us use the D'Alembert's rule.


Since limn(n+1)3x3(n+1)(n+1)4+1:n3x3nn4+1=x3limn(n+1)3(n4+1)((n+1)4+1)n3=x3limn(1+1n)3(1+1n4)(1+1n)4+1n4=x31=x3<1\lim\limits_{n\to \infty}|\frac{ (n+1)^3x^{3(n+1)}}{(n+1)^4+1}:\frac{ n^3x^{3n}}{n^4+1}|= |x|^3\cdot\lim\limits_{n\to \infty}\frac{ (n+1)^3(n^4+1)}{((n+1)^4+1)n^3}= |x|^3\cdot\lim\limits_{n\to \infty}\frac{ (1+\frac{1}{n})^3(1+\frac{1}{n^4})}{(1+\frac{1}{n})^4+\frac{1}{n^4}}=|x|^3\cdot 1=|x|^3<1imply x<1|x|<1, we conclude that the radius RR of convergence of summation n=0n3x3nn4+1\sum_{ n=0}^{\infty}\frac{ n^3x^{3n}}{n^4+1} is R=1.R=1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS