8: Convergence of summation (n!(n+1)!)/(3n)!
9: Radius of convergence of summation n=0 to infinity (n^3)x^3n/n^4+1
8: Let us study the convergence of summation "\\sum_{n=1}^{\\infty}\\frac{n!(n+1)!}{(3n)!}". Let us use the D'Alembert's rule.
Taking into account that
"\\lim\\limits_{n\\to \\infty}(\\frac{(n+1)!(n+2)!}{(3(n+1))!}:\\frac{n!(n+1)!}{(3n)!})=\n\\lim\\limits_{n\\to \\infty}(\\frac{(n+1)n!(n+2)(n+1)!}{(3n+3)!}\\cdot\\frac{(3n)!}{n!(n+1)!})=\n\\lim\\limits_{n\\to \\infty}\\frac{(n+1)(n+2)}{(3n+3)(3n+2)(3n+1)}=\n\\lim\\limits_{n\\to \\infty}\\frac{(1+\\frac{1}{n})(1+\\frac{2}{n})}{(3+\\frac{3}{n})(3+\\frac{2}{n})(3n+1)}=0<1"
we conclude that "\\sum_{n=1}^{\\infty}\\frac{n!(n+1)!}{(3n)!}" is convergent.
9: Let us find the radius of convergence of summation "\\sum_{ n=0}^{\\infty}\\frac{ n^3x^{3n}}{n^4+1}". Let us use the D'Alembert's rule.
Since "\\lim\\limits_{n\\to \\infty}|\\frac{ (n+1)^3x^{3(n+1)}}{(n+1)^4+1}:\\frac{ n^3x^{3n}}{n^4+1}|=\n|x|^3\\cdot\\lim\\limits_{n\\to \\infty}\\frac{ (n+1)^3(n^4+1)}{((n+1)^4+1)n^3}=\n|x|^3\\cdot\\lim\\limits_{n\\to \\infty}\\frac{ (1+\\frac{1}{n})^3(1+\\frac{1}{n^4})}{(1+\\frac{1}{n})^4+\\frac{1}{n^4}}=|x|^3\\cdot 1=|x|^3<1"imply "|x|<1", we conclude that the radius "R" of convergence of summation "\\sum_{ n=0}^{\\infty}\\frac{ n^3x^{3n}}{n^4+1}" is "R=1."
Comments
Leave a comment