Answer to Question #174298 in Calculus for Raj

Question #174298

1:Examine the series for convergence for summation of ((-1)^(n-1) sin(nx))/n^3


2: Test for convergence of summation  (x^n)/(2n)!


3: Examine the following series for absolute convergence of x-(x^2/2)+(x^3/3)-(x^4/4)+......


4:Test convergence of series 

  1+(1*2^2)/(1*3*5)+(1*2^2*3^2)


5: Test convergence of summation (x^n)/n!


6:Examine the following series for absolute convergence of 1+(x/2)+(x^2/3^2)+(x^3/4^3)+......(x>0)


7: Examine convergence of summation 1/root n


1
Expert's answer
2021-03-30T04:01:09-0400

 7) n=11n, by using integral test, 11ndn=(lnn)/1=ln()ln1= So the series diverges \begin{array}{l} \text { 7) } \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}, \text { by using integral test, } \\ \int_{1}^{\infty} \frac{1}{\sqrt{n}} d n=(\ln \sqrt{n}) /_{1}^{\infty}=\ln (\infty)-\ln 1=\infty \\ \text { So the series diverges } \end{array}  6) 1+x2+x232+x343+(x>0)==n=0xn(n+1)n by using Root test (ak)1/k<1 converent (xn(n+1)n)1/n=xn+1<1, if x<n+1 , then convergent \begin{array}{l} \text { 6) } 1+\frac{x}{2}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{4^{3}}+\ldots(x>0)= \\ =\sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)^{n}} \text { by using Root test }\left(a_{k}\right)^{1 / k}<1 \Rightarrow \text { converent } \\ \left(\frac{x^{n}}{(n+1)^{n}}\right)^{1 / n}=\frac{x}{n+1}<1, \text { if } x<n+1 \text { , then convergent } \end{array}  5) n=0xnn! by using Ratio test ak+1ak<1 , converge xn+1(n+1)!n!xn=xxnn!(n+1)n!xnxn+1<1 if x<n+1, the series is convereent \begin{array}{l} \text { 5) } \sum_{n=0}^{\infty} \frac{x^{n}}{n !} \text { by using Ratio test } \frac{a_{k+1}}{a_{k}}<1 \text { , converge } \\ \frac{x^{n+1}}{(n+1) !} \cdot \frac{n !}{x^{n}}=\frac{x \cdot x^{n}}{n !(n+1)} \cdot \frac{n !}{x^{n}} \Rightarrow \frac{x}{n+1}<1 \\ \text { if } x<n+1, \text { the series is convereent } \end{array}  3) x(x22)+(x33)(x44)+n=1(1)n+1xnn by using alternating test if xnn is monotone,  and if limnxnn=0 , then the series converges,  if 1<x1 converpent \begin{array}{l} \text { 3) } x-\left(\frac{x^{2}}{2}\right)+\left(\frac{x^{3}}{3}\right)-\left(\frac{x^{4}}{4}\right)+\ldots \Rightarrow \sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{x^{n}}{n} \\ \text { by using alternating test if } \frac{x^{n}}{n} \text { is monotone, } \\ \text { and if } \lim _{n \rightarrow \infty} \frac{x^{n}}{n}=0 \text { , then the series converges, } \\ \text { if }-1<x \leqslant 1 \quad \rightarrow \text { converpent } \end{array}  2) n=0xn(2n)! by wing Ratio test ak+1ak<1 , converges. xn+1(2n+1)!2n!xn=xxn2n!(2n+1)2n!xn=x2n+1 if x2n+1<1, converges x<2n+1\begin{array}{l} \text { 2) } \sum_{n=0}^{\infty} \frac{x^{n}}{(2 n) !} \text { by wing Ratio test } \frac{a_{k+1}}{a_{k}}<1 \text { , converges. } \\ \frac{x^{n+1}}{(2 n+1) !} \cdot \frac{2 n !}{x^{n}}=\frac{x \cdot x^{n}}{2 n !(2 n+1)} \cdot \frac{2 n !}{x^{n}}=\frac{x}{2 n+1} \\ \text { if } \frac{x}{2 n+1}<1, \text { converges } \Rightarrow x<2 n+1 \end{array}  1) n=1(1)(n1)sin(nx)n3 if sin(nx)n3 momotone  for any xNlimnsin(nx)n3=0 So series converges 4) Conditions of Question 4 are not full \begin{array}{l} \text { 1) } \sum_{n=1}^{\infty} \frac{(-1)^{(n-1)} \cdot \sin (n x)}{n^{3}} \quad \text { if } \frac{\sin (n x)}{n^{3}} \rightarrow \text { momotone } \\ \text { for any } x \in N \quad \lim _{n \rightarrow \infty} \frac{\sin (n x)}{n^{3}}=0 \\ \text { So series converges }\\ \text {4) Conditions of Question 4 are not full } \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment