1:Examine the series for convergence for summation of ((-1)^(n-1) sin(nx))/n^3
2: Test for convergence of summation (x^n)/(2n)!
3: Examine the following series for absolute convergence of x-(x^2/2)+(x^3/3)-(x^4/4)+......
4:Test convergence of series
1+(1*2^2)/(1*3*5)+(1*2^2*3^2)
5: Test convergence of summation (x^n)/n!
6:Examine the following series for absolute convergence of 1+(x/2)+(x^2/3^2)+(x^3/4^3)+......(x>0)
7: Examine convergence of summation 1/root n
1
Expert's answer
2021-03-30T04:01:09-0400
7) ∑n=1∞n1, by using integral test, ∫1∞n1dn=(lnn)/1∞=ln(∞)−ln1=∞ So the series diverges 6) 1+2x+32x2+43x3+…(x>0)==∑n=0∞(n+1)nxn by using Root test (ak)1/k<1⇒ converent ((n+1)nxn)1/n=n+1x<1, if x<n+1 , then convergent 5) ∑n=0∞n!xn by using Ratio test akak+1<1 , converge (n+1)!xn+1⋅xnn!=n!(n+1)x⋅xn⋅xnn!⇒n+1x<1 if x<n+1, the series is convereent 3) x−(2x2)+(3x3)−(4x4)+…⇒∑n=1∞(−1)n+1⋅nxn by using alternating test if nxn is monotone, and if limn→∞nxn=0 , then the series converges, if −1<x⩽1→ converpent 2) ∑n=0∞(2n)!xn by wing Ratio test akak+1<1 , converges. (2n+1)!xn+1⋅xn2n!=2n!(2n+1)x⋅xn⋅xn2n!=2n+1x if 2n+1x<1, converges ⇒x<2n+1 1) ∑n=1∞n3(−1)(n−1)⋅sin(nx) if n3sin(nx)→ momotone for any x∈Nlimn→∞n3sin(nx)=0 So series converges 4) Conditions of Question 4 are not full
Comments
Leave a comment