Consider the right circular cylindrical storage tank with a hemisphere at both ends.
Let h h h be the height of the cylindrical section and r r r be the radius of cylinder.
Obviously, the radius of hemisphere will also be r r r
The total volume of the storage tank is 100 f t 3 100 ft^3 100 f t 3
So,
π r 2 h + 2 ( 2 3 π r 3 ) = 100 \pi r^2 h+2(\frac{2}{3} \pi r^3)=100 π r 2 h + 2 ( 3 2 π r 3 ) = 100
π r 2 h + 4 3 π r 3 = 100 \pi r^2 h+\frac{4}{3} \pi r^3=100 π r 2 h + 3 4 π r 3 = 100
3 π r 2 h + 4 π r 3 = 300 3\pi r^2 h+4 \pi r^3=300 3 π r 2 h + 4 π r 3 = 300
3 π r 2 h = 300 − 4 π r 3 3\pi r^2 h=300-4 \pi r^3 3 π r 2 h = 300 − 4 π r 3
h = 300 − 4 π r 3 3 π r 2 h=\frac{300-4 \pi r^3}{3\pi r^2} h = 3 π r 2 300 − 4 π r 3
Now, the total surface area of the tank is,
S = 2 π r h + 4 π r 2 S=2 \pi r h+4 \pi r^2 S = 2 π r h + 4 π r 2
Substitute 300 − 4 π r 3 3 π r 2 \frac{300-4 \pi r^3}{3\pi r^2} 3 π r 2 300 − 4 π r 3 for h h h into S = 2 π r h + 4 π r 2 S=2 \pi r h+4 \pi r^2 S = 2 π r h + 4 π r 2 to obtain the total surface area in a single variable r r r as,
S ( r ) = 2 π r ( 300 − 4 π r 3 3 π r 2 ) + 4 π r 2 S(r)=2 \pi r (\frac{300-4 \pi r^3}{3\pi r^2})+4 \pi r^2 S ( r ) = 2 π r ( 3 π r 2 300 − 4 π r 3 ) + 4 π r 2
S ( r ) = 200 r − 8 π 3 r 2 + 4 π r 2 S(r)=\frac{200}{r}-\frac{8 \pi}{3}r^2+4 \pi r^2 S ( r ) = r 200 − 3 8 π r 2 + 4 π r 2
S ( r ) = 200 r + 4 π 3 r 2 S(r)=\frac{200}{r}+\frac{4 \pi}{3}r^2 S ( r ) = r 200 + 3 4 π r 2
Differentiate S S S with respect to r r r and set it equal to zero as,
S ′ ( r ) = 0 S'(r)=0 S ′ ( r ) = 0
− 200 r 2 + 8 π 3 r = 0 -\frac{200}{r^2}+\frac{8 \pi}{3}r=0 − r 2 200 + 3 8 π r = 0
8 π 3 r = 200 r 2 \frac{8 \pi}{3}r=\frac{200}{r^2} 3 8 π r = r 2 200
r 3 = 75 π r^3=\frac{75}{\pi} r 3 = π 75
r = 75 π 3 r=\sqrt[3]{\frac{75}{\pi}} r = 3 π 75
Here, S " ( r ) = 400 r 3 + 8 π 3 > 0 , S"(r)=\frac{400}{r^3}+\frac{8 \pi}{3}>0, S " ( r ) = r 3 400 + 3 8 π > 0 , therefore, S S S is minimum.
Plug r = 75 π 3 r=\sqrt[3]{\frac{75}{\pi}} r = 3 π 75 into h = 300 − 4 π r 3 3 π r 2 h=\frac{300-4 \pi r^3}{3\pi r^2} h = 3 π r 2 300 − 4 π r 3 and simplify for h h h as,
h = 300 − 4 π ( 75 π ) 3 π ( 75 π 3 ) 2 = 0 h=\frac{300-4 \pi (\frac{75}{\pi})}{3\pi (\sqrt[3]{\frac{75}{\pi}})^2}=0 h = 3 π ( 3 π 75 ) 2 300 − 4 π ( π 75 ) = 0
Comments