TO DERIVE :
let,
S = ∑ i = 1 n i 3 S=\displaystyle\sum_{i=1}^ni^3 S = i = 1 ∑ n i 3 ............(1)
We start off the proof with the "telescoping sum" (or the collapsing sum).
∑ i = 1 n [ ( i + 1 ) 4 − i 4 ] \displaystyle\sum_{i=1}^n [(i+1)^4-i^4] i = 1 ∑ n [( i + 1 ) 4 − i 4 ] SOLVING IN GENERAL FORM
= ( 2 4 − 1 4 ) + ( 3 4 − 2 4 ) + ( 4 4 − 3 4 ) + . . . . . . . . . . . + . . . . . . . . . . . . . . . . + ( n + 1 ) 4 − n 4 + . . . . . . . . . . . + . . . . . . . . . . . . . . . . + ( n ) 4 − ( n − 1 ) 4 = ( n + 1 ) 4 − 1 4 = ( n = 1 ) 4 − 1 = ( ( n + 1 ) 2 ) 2 − 1 = ( n 2 + 2 n + 1 ) 2 − 1 =(\cancel{2^4}-1^4)+(\cancel{3^4}-\cancel{2^4})+(4^4-\cancel{3^4})\\\\+...........+................+(n+1)^4-\cancel{n^4}\\+...........+................+
\cancel{(n)^4}-\cancel{(n-1)^4}\\
=(n+1)^4-1^4\\
=(n=1)^4-1\\
=((n+1)^2)^2-1\\
=(n^2+2n+1)^2-1 = ( 2 4 − 1 4 ) + ( 3 4 − 2 4 ) + ( 4 4 − 3 4 ) + ........... + ................ + ( n + 1 ) 4 − n 4 + ........... + ................ + ( n ) 4 − ( n − 1 ) 4 = ( n + 1 ) 4 − 1 4 = ( n = 1 ) 4 − 1 = (( n + 1 ) 2 ) 2 − 1 = ( n 2 + 2 n + 1 ) 2 − 1
∑ i = 1 n [ ( i + 1 ) 4 − i 4 ] \displaystyle\sum_{i=1}^n [(i+1)^4-i^4] i = 1 ∑ n [( i + 1 ) 4 − i 4 ] = n 4 + 4 n 3 + 6 n 2 + 4 n + 1 =n^4+4n^3+6n^2+4n+1 = n 4 + 4 n 3 + 6 n 2 + 4 n + 1 .......................(2)
now,
∑ i = 1 n [ ( i + 1 ) 4 − i 4 ] \displaystyle\sum_{i=1}^n [(i+1)^4-i^4] i = 1 ∑ n [( i + 1 ) 4 − i 4 ] SOLVING IN terms of i
= ∑ i = 1 n [ ( i 4 + 4 i 3 + 6 i 2 + 4 i + 1 ) − i 4 ] = ∑ i = 1 n [ ( 4 i 3 + 6 i 2 + 4 i + 1 ) ] = 4 ∑ i = 1 n i 3 + 6 ∑ i = 1 n i 2 + 4 ∑ i = 1 n i + ∑ i = 1 n 1
=\displaystyle\sum_{i=1}^n[(i^4+4i^3+6i^2+4i+1)-i^4]\\
=\displaystyle\sum_{i=1}^n [(4i^3+6i^2+4i+1)] \\
=4\displaystyle\sum_{i=1}^ni^3+6\displaystyle\sum_{i=1}^ni^2+4\displaystyle\sum_{i=1}^ni+\displaystyle\sum_{i=1}^n1\\ = i = 1 ∑ n [( i 4 + 4 i 3 + 6 i 2 + 4 i + 1 ) − i 4 ] = i = 1 ∑ n [( 4 i 3 + 6 i 2 + 4 i + 1 )] = 4 i = 1 ∑ n i 3 + 6 i = 1 ∑ n i 2 + 4 i = 1 ∑ n i + i = 1 ∑ n 1
from (1) ..further solving above...
= 4 S + 6 ( n ( n + 1 ) ( 2 n + 1 ) 6 ) + 4 ( n ( n + 1 ) 2 ) + n =4S+6({n(n+1)(2n+1)\over6})+4({n(n+1)\over2})+n = 4 S + 6 ( 6 n ( n + 1 ) ( 2 n + 1 ) ) + 4 ( 2 n ( n + 1 ) ) + n
= 4 S + 2 n 3 + n 2 + 2 n 2 + n + 2 n 2 + 3 n = 4 S + 2 n 3 + 5 n 2 + 4 n =4S+2n^3+n^2+2n^2+n+2n^2+3n\\
=4S+2n^3+5n^2+4n = 4 S + 2 n 3 + n 2 + 2 n 2 + n + 2 n 2 + 3 n = 4 S + 2 n 3 + 5 n 2 + 4 n ................(3)
THUS; equating (2) and (3);
n 4 + 4 n 3 + 6 n 2 + 4 n = 4 S + 2 n 3 + 5 n 2 + 4 n n 4 + 2 n 3 + n 2 = 4 S n 2 ( n 2 + 2 n + 1 ) = 4 S n^4+4n^3+6n^2+4n=4S+2n^3+5n^2+4n\\
n^4+2n^3+n^2=4S\\
n^2(n^2+2n+1)=4S n 4 + 4 n 3 + 6 n 2 + 4 n = 4 S + 2 n 3 + 5 n 2 + 4 n n 4 + 2 n 3 + n 2 = 4 S n 2 ( n 2 + 2 n + 1 ) = 4 S
4 S = n 2 ( n + 1 ) 2 S = n 2 ( n + 1 ) 2 2 2 4S=n^2(n+1)^2\\
S={n^2(n+1)^2\over2^2} 4 S = n 2 ( n + 1 ) 2 S = 2 2 n 2 ( n + 1 ) 2
S = [ n ( n + 1 ) 2 ] 2 \boxed{S=[{n(n+1)\over2}]^2} S = [ 2 n ( n + 1 ) ] 2
hence drived.
Comments