Derive a formula for
n
∑
i= i3 a telescoping sum with terms f(I) = i4
TO DERIVE :
let,
"S=\\displaystyle\\sum_{i=1}^ni^3" ............(1)
We start off the proof with the "telescoping sum" (or the collapsing sum).
"\\displaystyle\\sum_{i=1}^n [(i+1)^4-i^4]" SOLVING IN GENERAL FORM
"=(\\cancel{2^4}-1^4)+(\\cancel{3^4}-\\cancel{2^4})+(4^4-\\cancel{3^4})\\\\\\\\+...........+................+(n+1)^4-\\cancel{n^4}\\\\+...........+................+\n\\cancel{(n)^4}-\\cancel{(n-1)^4}\\\\\n=(n+1)^4-1^4\\\\\n=(n=1)^4-1\\\\\n=((n+1)^2)^2-1\\\\\n=(n^2+2n+1)^2-1"
"\\displaystyle\\sum_{i=1}^n [(i+1)^4-i^4]" "=n^4+4n^3+6n^2+4n+1" .......................(2)
now,
"\\displaystyle\\sum_{i=1}^n [(i+1)^4-i^4]" SOLVING IN terms of i
"\u200b\t\n=\\displaystyle\\sum_{i=1}^n[(i^4+4i^3+6i^2+4i+1)-i^4]\\\\\n=\\displaystyle\\sum_{i=1}^n [(4i^3+6i^2+4i+1)] \\\\\n\n=4\\displaystyle\\sum_{i=1}^ni^3+6\\displaystyle\\sum_{i=1}^ni^2+4\\displaystyle\\sum_{i=1}^ni+\\displaystyle\\sum_{i=1}^n1\\\\"
from (1) ..further solving above...
"=4S+6({n(n+1)(2n+1)\\over6})+4({n(n+1)\\over2})+n"
"=4S+2n^3+n^2+2n^2+n+2n^2+3n\\\\\n=4S+2n^3+5n^2+4n" ................(3)
THUS; equating (2) and (3);
"n^4+4n^3+6n^2+4n=4S+2n^3+5n^2+4n\\\\\nn^4+2n^3+n^2=4S\\\\\nn^2(n^2+2n+1)=4S"
"4S=n^2(n+1)^2\\\\\nS={n^2(n+1)^2\\over2^2}"
"\\boxed{S=[{n(n+1)\\over2}]^2}"
hence drived.
Comments
Leave a comment