A)
1)
∫ 0 1 ( 2 X 2 + 8 ) = 8.66 \intop_0^1(2X^2+8)\\
=8.66 ∫ 0 1 ( 2 X 2 + 8 ) = 8.66
2)
∫ 0 1 − x 2 + 7 = 20 3 = 6.667 \int_0^1-x^2+7\\={20\over3}=6.667 ∫ 0 1 − x 2 + 7 = 3 20 = 6.667
B)
1)
y = − 1 3 x 2 + 10 x = 1 x = 3 ∴ ∫ 1 3 ( − 1 3 x 2 + 10 ) = 17.11 y={-1\over 3}x^2+10 \\x=1\\x=3 \\
\therefore\int_1^3({-1\over 3}x^2 +10)
\\\boxed{=17.11} y = 3 − 1 x 2 + 10 x = 1 x = 3 ∴ ∫ 1 3 ( 3 − 1 x 2 + 10 ) = 17.11
2)
y 1 = x 3 − 8 x = 1 x = 2 ∴ ∫ 1 2 ( x 3 − 8 x ) = − 4.5 y_{1}=x^{3}-8\\
x=1\\
x=2
\\
\therefore
\int_1^2(x^3-8x)
\\\boxed{=-4.5} y 1 = x 3 − 8 x = 1 x = 2 ∴ ∫ 1 2 ( x 3 − 8 x ) = − 4.5
C]
1)
y 1 = x 2 + 3 y = 7 ∴ ∫ − 2 2 ( 7 − x 2 + 3 ) d x = 34.667 y_{1}=x^{2}+3
\\y=7
\\\therefore\int_{-2}^{2}\left(7-x^{2}+3\right)dx\\\boxed{=34.667} y 1 = x 2 + 3 y = 7 ∴ ∫ − 2 2 ( 7 − x 2 + 3 ) d x = 34.667
2)
y 1 = 2 x 2 y 2 = 4 x + 6 ∫ − 1 3 ( y 1 − y 2 ) d x = − 21.33 y_1=2x^2\\
y_2=4x+6\\
\int_{-1}^{3}\left(y_{1}-y_{2}\right)dx
\\=
-21.33 y 1 = 2 x 2 y 2 = 4 x + 6 ∫ − 1 3 ( y 1 − y 2 ) d x = − 21.33
3)
y 1 = x 2 y 2 = − x 2 + 4 x ∫ 0 2 ( y 2 − y 1 ) d x = 2.66 y_{1}=x^{2}\\y_{2}=-x^{2}+4x\\\int_{0}^{2}\left(y_{2}-y_{1}\right)dx\\=2.66 y 1 = x 2 y 2 = − x 2 + 4 x ∫ 0 2 ( y 2 − y 1 ) d x = 2.66
4)
y 1 = x 3 − 6 x 2 + 8 x y 2 = x 2 − 4 x ∫ 0 3 ( y 1 − y 2 ) d x + ∫ 3 4 ( y 2 − y 1 ) d x = 11.833 y_{1}=x^{3}-6x^{2}+8x\\y_{2}=x^{2}-4x\\\int_{0}^{3}\left(y_{1}-y_{2}\right)dx+\int_{3}^{4}\left(y_{2}-y_{1}\right)dx\\\boxed{=11.833} y 1 = x 3 − 6 x 2 + 8 x y 2 = x 2 − 4 x ∫ 0 3 ( y 1 − y 2 ) d x + ∫ 3 4 ( y 2 − y 1 ) d x = 11.833
D}
y = 2 y 2 = x + 2 y 3 = 2 − x y=2\\
y_{2}=\sqrt{x}+2\\y_{3}=2-x y = 2 y 2 = x + 2 y 3 = 2 − x
these curves has no area enclosed so area=0
Comments