A. Find the area underneath the given curve.
1.) y= -2x² + 8
from x=0 to x=1
2.) y= -x² + 7
from x=0 to x=1
B. Find the area enclosed by the given curve, the x-axis, and the given lines.
1.) y= -1/3x² + 10
from x=1 and x=3
2.) y= x³ - 8
from x= -1 to x =2
C. Find the area bounded by the given curve and line.
1.) y= x² + 3 and y= 7
2.) y= 2x² and y= 4x + 6
3.) y= -x² + 4x and y= x²
4.) y= x³ -6x² + 8x and y= x² -4x
D. Find the area bounded by y=2; y=√x+2; and y=2 - x.
A)
1)
"\\intop_0^1(2X^2+8)\\\\\n=8.66"
2)
"\\int_0^1-x^2+7\\\\={20\\over3}=6.667"
B)
1)
"y={-1\\over 3}x^2+10 \\\\x=1\\\\x=3 \\\\\n\\therefore\\int_1^3({-1\\over 3}x^2 +10)\n\\\\\\boxed{=17.11}"
2)
"y_{1}=x^{3}-8\\\\\nx=1\\\\\nx=2\n\\\\\n\\therefore \n\\int_1^2(x^3-8x)\n\\\\\\boxed{=-4.5}"
C]
1)
"y_{1}=x^{2}+3\n\\\\y=7\n\\\\\\therefore\\int_{-2}^{2}\\left(7-x^{2}+3\\right)dx\\\\\\boxed{=34.667}"
2)
"y_1=2x^2\\\\\ny_2=4x+6\\\\\n\\int_{-1}^{3}\\left(y_{1}-y_{2}\\right)dx\n\\\\=\n-21.33"
3)
"y_{1}=x^{2}\\\\y_{2}=-x^{2}+4x\\\\\\int_{0}^{2}\\left(y_{2}-y_{1}\\right)dx\\\\=2.66"
4)
"y_{1}=x^{3}-6x^{2}+8x\\\\y_{2}=x^{2}-4x\\\\\\int_{0}^{3}\\left(y_{1}-y_{2}\\right)dx+\\int_{3}^{4}\\left(y_{2}-y_{1}\\right)dx\\\\\\boxed{=11.833}"
D}
"y=2\\\\\ny_{2}=\\sqrt{x}+2\\\\y_{3}=2-x"
these curves has no area enclosed so area=0
Comments
Leave a comment