Question #173180

A. Find the area underneath the given curve.


1.) y= -2x² + 8

from x=0 to x=1


2.) y= -x² + 7

from x=0 to x=1


B. Find the area enclosed by the given curve, the x-axis, and the given lines.


1.) y= -1/3x² + 10

from x=1 and x=3


2.) y= x³ - 8

from x= -1 to x =2


C. Find the area bounded by the given curve and line.


1.) y= x² + 3 and y= 7


2.) y= 2x² and y= 4x + 6


3.) y= -x² + 4x and y= x²


4.) y= x³ -6x² + 8x and y= x² -4x


D. Find the area bounded by y=2; y=√x+2; and y=2 - x.


1
Expert's answer
2021-03-31T14:05:50-0400

A)

1)

01(2X2+8)=8.66\intop_0^1(2X^2+8)\\ =8.66

2)

01x2+7=203=6.667\int_0^1-x^2+7\\={20\over3}=6.667


B)

1)

y=13x2+10x=1x=313(13x2+10)=17.11y={-1\over 3}x^2+10 \\x=1\\x=3 \\ \therefore\int_1^3({-1\over 3}x^2 +10) \\\boxed{=17.11}



2)

y1=x38x=1x=212(x38x)=4.5y_{1}=x^{3}-8\\ x=1\\ x=2 \\ \therefore \int_1^2(x^3-8x) \\\boxed{=-4.5}



C]

1)

y1=x2+3y=722(7x2+3)dx=34.667y_{1}=x^{2}+3 \\y=7 \\\therefore\int_{-2}^{2}\left(7-x^{2}+3\right)dx\\\boxed{=34.667}


2)

y1=2x2y2=4x+613(y1y2)dx=21.33y_1=2x^2\\ y_2=4x+6\\ \int_{-1}^{3}\left(y_{1}-y_{2}\right)dx \\= -21.33


3)

y1=x2y2=x2+4x02(y2y1)dx=2.66y_{1}=x^{2}\\y_{2}=-x^{2}+4x\\\int_{0}^{2}\left(y_{2}-y_{1}\right)dx\\=2.66


4)

y1=x36x2+8xy2=x24x03(y1y2)dx+34(y2y1)dx=11.833y_{1}=x^{3}-6x^{2}+8x\\y_{2}=x^{2}-4x\\\int_{0}^{3}\left(y_{1}-y_{2}\right)dx+\int_{3}^{4}\left(y_{2}-y_{1}\right)dx\\\boxed{=11.833}


D}


y=2y2=x+2y3=2xy=2\\ y_{2}=\sqrt{x}+2\\y_{3}=2-x



these curves has no area enclosed so area=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS