e) lim_((x y) to (0 0)) (sin x)/(y) exists.
Solution:
lim(x, y)→(0, 0)(sin(x)y)\lim _{\left(x,\:y\right)\to \left(0,\:0\right)}\left(\frac{\sin \left(x\right)}{y}\right)lim(x,y)→(0,0)(ysin(x))
We calculate limit along two different paths.
Along x=0:x=0:x=0:
lim(x, y)→(0, 0)(sin(0)y)\lim _{\left(x,\:y\right)\to \left(0,\:0\right)}\left(\frac{\sin \left(0\right)}{y}\right)lim(x,y)→(0,0)(ysin(0))=0=0=0
Along x=y:x=y:x=y:
lim(y, y)→(0, 0)(sin(y)y)\lim _{\left(y,\:y\right)\to \left(0,\:0\right)}\left(\frac{\sin \left(y\right)}{y}\right)lim(y,y)→(0,0)(ysin(y))=1=1=1
Since, they are unequal, limit diverges or does not exist.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments