e) lim_((x y) to (0 0)) (sin x)/(y) exists.
Solution:
"\\lim _{\\left(x,\\:y\\right)\\to \\left(0,\\:0\\right)}\\left(\\frac{\\sin \\left(x\\right)}{y}\\right)"
We calculate limit along two different paths.
Along "x=0:"
"\\lim _{\\left(x,\\:y\\right)\\to \\left(0,\\:0\\right)}\\left(\\frac{\\sin \\left(0\\right)}{y}\\right)""=0"
Along "x=y:"
"\\lim _{\\left(y,\\:y\\right)\\to \\left(0,\\:0\\right)}\\left(\\frac{\\sin \\left(y\\right)}{y}\\right)""=1"
Since, they are unequal, limit diverges or does not exist.
Comments
Leave a comment