Question #173326

 If A, B are differentiable vector point function of scalar variable f over domain S, then prove that d/dt( AxB) = (dA/dt x B) + (A x dB/dt) 


1
Expert's answer
2021-03-31T01:55:26-0400

Given A, B are differentiable vector point functions of scalar variable f over domain S.

then we have to prove that: d(A×B)dt\frac{d(A \times B)}{dt} = dAdt×B\frac{dA}{dt} \times B + A×dBdtA \times \frac{dB}{dt}

Let A = << x1, y1, z1 >> and B = << x2, y2, z2 >>

    \implies dAdt\frac{dA}{dt} = << x1', y1', z1' >> and dBdt\frac{dB}{dt} = << x2', y2', z2' >>

We have,

A ×\times B = ijkx1y1z1x2y2z2\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1\\ x_2 & y_2 & z_2 \end{vmatrix} = = << y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2 >>


Taking derivatives using the product rule from single variable calculus, we get a lot of terms, which we can group to prove the vector formula.


d(A×B)dt\frac{d(A \times B)}{dt} = << y1'z2 + y1z2' − z1'y2 − z1y2', z1'x2 + z1x2' − x1'z2 − x1z2', x1'y2 + x1 y2' − y1'x2 − y1x2' >>

= << (y1'z2 − z1'y2)+ (y1z2'− z1y2'), (z1'x2 − x1'z2) + (z1x2'− x1z2'), (x1'y2 − y1'x2) + (x1y2'− y1x2') >>

= << x1', y1', z1' >> ×\times << x2, y2, z2 >> + << x1, y1, z1 >> ×\times << x2', y2', z2' >>


= dAdt×B\frac{dA}{dt} \times B + A×dBdtA \times \frac{dB}{dt}

Hence proved,


d(A×B)dt\frac{d(A \times B)}{dt} = dAdt×B\frac{dA}{dt} \times B + A×dBdtA \times \frac{dB}{dt}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS