If A, B are differentiable vector point function of scalar variable f over domain S, then prove that d/dt( AxB) = (dA/dt x B) + (A x dB/dt)
Given A, B are differentiable vector point functions of scalar variable f over domain S.
then we have to prove that: = +
Let A = x1, y1, z1 and B = x2, y2, z2
= x1', y1', z1' and = x2', y2', z2'
We have,
A B = = = y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2
Taking derivatives using the product rule from single variable calculus, we get a lot of terms, which we can group to prove the vector formula.
= y1'z2 + y1z2' − z1'y2 − z1y2', z1'x2 + z1x2' − x1'z2 − x1z2', x1'y2 + x1 y2' − y1'x2 − y1x2'
= (y1'z2 − z1'y2)+ (y1z2'− z1y2'), (z1'x2 − x1'z2) + (z1x2'− x1z2'), (x1'y2 − y1'x2) + (x1y2'− y1x2')
= x1', y1', z1' x2, y2, z2 + x1, y1, z1 x2', y2', z2'
= +
Hence proved,
= +
Comments