Question #172384

A. Find the area underneath the given curve.


1.) y= -2x² + 8

from x=0 to x=1


2.) y= -x² + 7

from x=0 to x=1


B. Find the area enclosed by the given curve, the x-axis, and the given lines.


1.) y= -1/3x² + 10

from x=1 and x=3


2.) y= x³ - 8

from x= -1 to x =2


C. Find the area bounded by the given curve and line.


1.) y= x² + 3 and y= 7


2.) y= 2x² and y= 4x + 6


3.) y= -x² + 4x and y= x²


4.) y= x³ -6x² + 8x and y= x² -4x


D. Find the area bounded by y=2; y=√x+2; and y=2 - x.




1
Expert's answer
2021-03-31T01:54:56-0400

A. 1) 012x2+8 dx\int_{0}^{1}{-2x^2+8\ dx}

2x33+8x-\frac{2x^3}{3}+8x

23+80-\frac{2}{3}+8-0

7137\frac{1}{3}


2) 01x2+7 dx\int_{0}^{1}{-x^2+7\ dx}

x33+7x-\frac{x^3}{3}+7x

13+70-\frac{1}{3}+7-0

6236\frac{2}{3}


B. 1) 1313x2+10 dx\int_{1}^{3}{-\frac{1}{3}x^{-2}+10\ dx}

x13+10x\frac{x^{-1}}{3}+10x

19+30(13+10)=1979\frac{1}{9}+30-\left(\frac{1}{3}+10\right)=19\frac{7}{9}


2) 12x38 dx\int_{-1}^{2}{x^3-8\ dx}

x448x\frac{x^4}{4}-8x

16416(14 8)\left|\frac{16}{4}-16-\left(\frac{1}{4}-\ -8\right)\right|

20\frac{1}{4}\


C. 1)y=x2+3y=x^2+3

y=7y=7

7=x2+37=x^2+3

x= ±2x=\ \pm2

227(x2+3 )dx\int_{-2}^{2}{7-\left(x^2+3\ \right)dx}

4xx334x-\frac{x^3}{3}

883(8 83)8-\frac{8}{3}-\left(-8-\ -\frac{8}{3}\right)

102310\frac{2}{3}


2) y=2x2y=2x^2

y=4x+6y=4x+6

2x2=4x+62x^2=4x+6

x22x3=0x^2-2x-3=0

x23x+x3=0x^2-3x+x-3=0

x(x3)+(x3)=0x\left(x-3\right)+\left(x-3\right)=0

(x+1)(x3)=0\left(x+1\right)\left(x-3\right)=0

x= 1 or x=3x=\ -1\ or\ x=3

134x+62x2 dx\int_{-1}^{3}{4x+6-2x^2\ dx}

2x2+6x23x32x^2+6x-\frac{2}{3}x^3

18+18543(2623)18+18-\frac{54}{3}-\left(2-6--\frac{2}{3}\right)

211321\frac{1}{3}


3) y=\ -x^2+4x\

y=x2y=x^2

0 = 2x2+4x0\ =\ -2x^2+4x

x(x2)=0x\left(x-2\right)=0

x=0, 2x=0,\ 2

02x2+4xx2 dx\int_{0}^{2}{-x^2+4x-x^2\ dx}

23x3+2x2-\frac{2}{3}x^3+2x^2

163+8-\frac{16}{3}+8

2232\frac{2}{3}


4) y=x36x2y=x^3-6x^2

y=x24xy=x^2-4x

x36x2x2+4x=0x^3-6x^2-x^2+4x=0

x(x27x+4)=0x\left(x^2-7x+4\right)=0

x=0x=0

x27x+4=0x^2-7x+4=0

7 ± (7)24(1)(4)2(1)=>x= 0.628 or 6.372\frac{7\ \pm\ \sqrt{\left(-7\right)^2-4(1)(4)}}{2(1)}=>x=\ 0.628\ or\ 6.372

when y =0when\ y\ = 0

for y=x24x ,  x24x=0=>x=0 or x=4{for\ y=x^2-4x\ ,\ \ x}^2-4x=0=>x=0\ or\ x=4

for y= x36x2=0=>x=0 or x=6for\ y=\ x^3-6x^2=0=>x=0\ or\ x=6

06x36x2dx04x24x dx + 46.372x24x dx  66.372x36x2 dx \left|\int_{0}^{6}{x^3-6x^2dx}\right|-\left|\int_{0}^{4}{x^2-4x\ dx\ }\right|+\ \int_{4}^{6.372}{x^2-4x\ dx\ }-\ \int_{6}^{6.372}{x^3-6x^2\ dx\ }

x442x30,6x332x20, 4+(x332x2), 4, 6.372(x442x3), 6, 6.372\left|\frac{x^4}{4}-2x^3\right|0,6-\left|\frac{x^3}{3}-2x^2\right|0,\ 4+\left(\frac{x^3}{3}-2x^2\right),\ 4,\ 6.372-\left(\frac{x^4}{4}-2x^3\right),\ 6,\ 6.372

10810.667+15.701 2.702=110.332108-10.667+15.701-\ 2.702=110.332


D. y= x+2y=\ \sqrt x+2

x=(y2)2=y24y+4x=\left(y-2\right)^2=y^2-4y+4

y=2xy=2-x

x=2yx=2-y

y24y+4=2yy^2-4y+4=2-y

y23y+2=0y^2-3y+2=0

(y1)(y2)=0\left(y-1\right)\left(y-2\right)=0

y=1, 2y=1,\ 2

122y(y24y+4) dy\int_{1}^{2}{2-y-\left(y^2-4y+4\right)\ dy}

2y+32y2y33-2y+\frac{3}{2}y^2-\frac{y^3}{3}

(4+12283)(2+3213)\left(-4+\frac{12}{2}-\frac{8}{3}\right)-\left(-2+\frac{3}{2}-\frac{1}{3}\right)

16\frac{1}{6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS