A. 1) ∫01−2x2+8 dx
−32x3+8x
−32+8−0
731
2) ∫01−x2+7 dx
−3x3+7x
−31+7−0
632
B. 1) ∫13−31x−2+10 dx
3x−1+10x
91+30−(31+10)=1997
2) ∫−12x3−8 dx
4x4−8x
∣∣416−16−(41− −8)∣∣
20\frac{1}{4}\
C. 1)y=x2+3
y=7
7=x2+3
x= ±2
∫−227−(x2+3 )dx
4x−3x3
8−38−(−8− −38)
1032
2) y=2x2
y=4x+6
2x2=4x+6
x2−2x−3=0
x2−3x+x−3=0
x(x−3)+(x−3)=0
(x+1)(x−3)=0
x= −1 or x=3
∫−134x+6−2x2 dx
2x2+6x−32x3
18+18−354−(2−6−−32)
2131
3) y=\ -x^2+4x\
y=x2
0 = −2x2+4x
x(x−2)=0
x=0, 2
∫02−x2+4x−x2 dx
−32x3+2x2
−316+8
232
4) y=x3−6x2
y=x2−4x
x3−6x2−x2+4x=0
x(x2−7x+4)=0
x=0
x2−7x+4=0
2(1)7 ± (−7)2−4(1)(4)=>x= 0.628 or 6.372
when y =0
for y=x2−4x , x2−4x=0=>x=0 or x=4
for y= x3−6x2=0=>x=0 or x=6
∣∣∫06x3−6x2dx∣∣−∣∣∫04x2−4x dx ∣∣+ ∫46.372x2−4x dx − ∫66.372x3−6x2 dx
∣∣4x4−2x3∣∣0,6−∣∣3x3−2x2∣∣0, 4+(3x3−2x2), 4, 6.372−(4x4−2x3), 6, 6.372
108−10.667+15.701− 2.702=110.332
D. y= x+2
x=(y−2)2=y2−4y+4
y=2−x
x=2−y
y2−4y+4=2−y
y2−3y+2=0
(y−1)(y−2)=0
y=1, 2
∫122−y−(y2−4y+4) dy
−2y+23y2−3y3
(−4+212−38)−(−2+23−31)
61
Comments