A. 1) ∫01−2x2+8 dx
−32x3+8x
−32+8−0=731
2) ∫01−x2+1 dx
−3x3+x
−31+1−0=32
B. 1) ∫13−31x2+10 dx
−9x3+10x
−927+30−(−91+10)=1791
2) ∫−12x3−8 dx
4x4−8x
416−16−(41− −8)= −2041=2041 square units
C. 1) y=x2+3
y=7
7=x2+3=>x= ±2
∫−227−(x2+3 )dx
4x−3x3
8−38−(−8− −38)=1032
2) y=2x2
y=4x+6
2x2=4x+6
x2−2x−3=0
x2−3x+x−3=0
x(x−3)+(x−3)=0
(x+1)(x−3)=0
x= −1 or x=3
∫−134x+6−2x2 dx
2x2+6x−32x3
18+18−354−(2−6−−32)=2131
3) y=\ -x^2+4x\
y=x2
x^2=\ -x^2+4x\
2x2−4x=0
x(x−2)=0
x=0 or x=2
∫02−x2+4x−x2 dx
∫02−x2+4x−x2 dx
−32x3+2x2
−316+8=232
4) y=x3−6x2
y=x2−4x
x3−7x2+4x=0
x(x2−7x+4)=0=>x=0
x2−7x+4=0
27 ± 49−16=>x= 0.628 or 6.372
x intercepts
for y=x2−4x , x2−4x=0=>x=0 or x=4
for y= x3−6x2, x3−6x2=0=>x=0 or x=6
∣∫06x3−6x2dx∣−∣∫04x2−4x dx ∣
+ ∫46.372x2−4x dx − ∫66.372x3−6x2 dx
∣∣4x4−2x3∣∣0,6−∣∣3x3−2x2∣∣0, 4
+(3x3−2x2), 4, 6.372−(4x4−2x3), 6, 6.372
108−10.667+15.701− 2.702=110.332
Comments
Leave a comment