Evaluate:
∫(x²−4x+4x−2)dx=∫(x²−4x+4x²)dx=∫x² dx−4∫x dx+4∫1x² dx=x³3−4(x²2)+4(−1x)+c=\int(x² - 4x + 4x^{-2}) dx =\\ \int(x² -4x + \dfrac{4}{x²}) dx = \\ \int x²\ dx - 4\int x \ dx+4 \int \dfrac{1}{x²}\ dx =\\ \dfrac{x³}3 - 4(\dfrac{x²}2) + 4(-\dfrac1x)+c =∫(x²−4x+4x−2)dx=∫(x²−4x+x²4)dx=∫x² dx−4∫x dx+4∫x²1 dx=3x³−4(2x²)+4(−x1)+c=
13x3−2x2−4x−1+c\dfrac{1}3 x^3 - 2x^2 - 4x^{-1}+c31x3−2x2−4x−1+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment