[xv Yv (x)]= xv Yv-1(x)
To prove:
"{d\\over dx}[x^vY_{v}(x)]=x^vY_{v-1}(x)"
Taking Left Hand Side:
"{d\\over dx}[x^vY_{v}(x)]"
We have to assume "m=Y_u(x)\\ \\&\\ n=x^v"
Now, use Leibnitz Theorem
"{d\\over dx}[x^vY_{v}(x)]=^1C_0(1!\\times x^v \\times Y_{v-1}(x))"
"=" "x^vY_{v-1}(x)=" Right Hand Side
Hence "{d\\over dx}[x^vY_{v}(x)]=x^vY_{v-1}(x)"
Comments
Leave a comment