Question #170294

Find the area of the surface generated by revolving the curve


y

=

5

x

,

y=5x,

       2

x

4

2≤x≤4



around the x

x

-axis.


1
Expert's answer
2021-03-10T11:31:44-0500

y\ =\ 5\sqrt x\

dydx=52x\frac{dy}{dx}=\frac{5}{2\sqrt x}

(dydx)2=254x\left(\frac{dy}{dx}\right)^2=\frac{25}{4x}

242πy ds= 242π5x1+ 254xdx\int_{2}^{4}{2\pi y\ ds}=\ \int_{2}^{4}{2\pi5\sqrt x\sqrt{1+\ \frac{25}{4x}}dx}

10π24x+ 254dx10\pi\int_{2}^{4}{\sqrt{x+\ \frac{25}{4}}dx}

10π (x+254)322310\pi\ \left(x+\frac{25}{4}\right)^\frac{3}{2}\ast\frac{2}{3}

20π3{(414)32(334)32}\frac{20\pi}{3}\left\{\left(\frac{41}{4}\right)^\frac{3}{2}-\left(\frac{33}{4}\right)^\frac{3}{2}\right\}

60.79794π60.79794\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS