Find the area of the surface generated by revolving the curve
y
=
5
√
x
,
y=5x,
2
≤
4
2≤x≤4
around the x
-axis.
y\ =\ 5\sqrt x\
dydx=52x\frac{dy}{dx}=\frac{5}{2\sqrt x}dxdy=2x5
(dydx)2=254x\left(\frac{dy}{dx}\right)^2=\frac{25}{4x}(dxdy)2=4x25
∫242πy ds= ∫242π5x1+ 254xdx\int_{2}^{4}{2\pi y\ ds}=\ \int_{2}^{4}{2\pi5\sqrt x\sqrt{1+\ \frac{25}{4x}}dx}∫242πy ds= ∫242π5x1+ 4x25dx
10π∫24x+ 254dx10\pi\int_{2}^{4}{\sqrt{x+\ \frac{25}{4}}dx}10π∫24x+ 425dx
10π (x+254)32∗2310\pi\ \left(x+\frac{25}{4}\right)^\frac{3}{2}\ast\frac{2}{3}10π (x+425)23∗32
20π3{(414)32−(334)32}\frac{20\pi}{3}\left\{\left(\frac{41}{4}\right)^\frac{3}{2}-\left(\frac{33}{4}\right)^\frac{3}{2}\right\}320π{(441)23−(433)23}
60.79794π60.79794\pi60.79794π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments