Question #172104

Find the area bounded by y=2; y=√x+2; and y=2-x.


1
Expert's answer
2021-03-19T12:37:09-0400

y= x+2=>x=(y2)2=y24y+4y=\ \sqrt x+2=>x=\left(y-2\right)^2=y^2-4y+4

y=2x=>x=2yy=2-x=>x=2-y

y24y+4=2yy^2-4y+4=2-y

y23y+2=0y^2-3y+2=0

(y1)(y2)=0\left(y-1\right)\left(y-2\right)=0

y=1 or y=2y=1\ or\ y=2

122y(y24y+4) dy\int_{1}^{2}{2-y-\left(y^2-4y+4\right)\ dy}

2y+32y2y33-2y+\frac{3}{2}y^2-\frac{y^3}{3}

4+12283(2+3213)=16-4+\frac{12}{2}-\frac{8}{3}-\left(-2+\frac{3}{2}-\frac{1}{3}\right)=\frac{1}{6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS