Find the area bounded by y=2; y=√x+2; and y=2-x.
y= x+2=>x=(y−2)2=y2−4y+4y=\ \sqrt x+2=>x=\left(y-2\right)^2=y^2-4y+4y= x+2=>x=(y−2)2=y2−4y+4
y=2−x=>x=2−yy=2-x=>x=2-yy=2−x=>x=2−y
y2−4y+4=2−yy^2-4y+4=2-yy2−4y+4=2−y
y2−3y+2=0y^2-3y+2=0y2−3y+2=0
(y−1)(y−2)=0\left(y-1\right)\left(y-2\right)=0(y−1)(y−2)=0
y=1 or y=2y=1\ or\ y=2y=1 or y=2
∫122−y−(y2−4y+4) dy\int_{1}^{2}{2-y-\left(y^2-4y+4\right)\ dy}∫122−y−(y2−4y+4) dy
−2y+32y2−y33-2y+\frac{3}{2}y^2-\frac{y^3}{3}−2y+23y2−3y3
−4+122−83−(−2+32−13)=16-4+\frac{12}{2}-\frac{8}{3}-\left(-2+\frac{3}{2}-\frac{1}{3}\right)=\frac{1}{6}−4+212−38−(−2+23−31)=61
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments